home / skills / dkyazzentwatwa / chatgpt-skills / data-storyteller
This skill converts CSV or Excel data into narrative reports with auto-generated insights, visuals, and PDF exports to inform decisions.
npx playbooks add skill dkyazzentwatwa/chatgpt-skills --skill data-storytellerReview the files below or copy the command above to add this skill to your agents.
---
name: data-storyteller
description: Transform CSV/Excel data into narrative reports with auto-generated insights, visualizations, and PDF export. Auto-detects patterns and creates plain-English summaries.
---
# Data Storyteller
Automatically transform raw data into compelling, insight-rich reports. Upload any CSV or Excel file and get back a complete analysis with visualizations, statistical summaries, and narrative explanations - all without writing code.
## Core Workflow
### 1. Load and Analyze Data
```python
from scripts.data_storyteller import DataStoryteller
# Initialize with your data file
storyteller = DataStoryteller("your_data.csv")
# Or from a pandas DataFrame
import pandas as pd
df = pd.read_csv("your_data.csv")
storyteller = DataStoryteller(df)
```
### 2. Generate Full Report
```python
# Generate comprehensive report
report = storyteller.generate_report()
# Access components
print(report['summary']) # Executive summary
print(report['insights']) # Key findings
print(report['statistics']) # Statistical analysis
print(report['visualizations']) # Generated chart info
```
### 3. Export Options
```python
# Export to PDF
storyteller.export_pdf("analysis_report.pdf")
# Export to HTML (interactive charts)
storyteller.export_html("analysis_report.html")
# Export charts only
storyteller.export_charts("charts/", format="png")
```
## Quick Start Examples
### Basic Analysis
```python
from scripts.data_storyteller import DataStoryteller
# One-liner full analysis
DataStoryteller("sales_data.csv").generate_report().export_pdf("report.pdf")
```
### Custom Analysis
```python
storyteller = DataStoryteller("data.csv")
# Focus on specific columns
storyteller.analyze_columns(['revenue', 'customers', 'date'])
# Set analysis parameters
report = storyteller.generate_report(
include_correlations=True,
include_outliers=True,
include_trends=True,
time_column='date',
chart_style='business'
)
```
## Features
### Auto-Detection
- **Column Types**: Numeric, categorical, datetime, text, boolean
- **Data Quality**: Missing values, duplicates, outliers
- **Relationships**: Correlations, dependencies, groupings
- **Time Series**: Trends, seasonality, anomalies
### Generated Visualizations
| Data Type | Charts Generated |
|-----------|-----------------|
| Numeric | Histogram, box plot, trend line |
| Categorical | Bar chart, pie chart, frequency table |
| Time Series | Line chart, decomposition, forecast |
| Correlations | Heatmap, scatter matrix |
| Comparisons | Grouped bar, stacked area |
### Narrative Insights
The storyteller generates plain-English insights including:
- Executive summary of key findings
- Notable patterns and anomalies
- Statistical significance notes
- Actionable recommendations
- Data quality warnings
## Output Sections
### 1. Executive Summary
High-level overview of the dataset and key findings in 2-3 paragraphs.
### 2. Data Profile
- Row/column counts
- Memory usage
- Missing value analysis
- Duplicate detection
- Data type distribution
### 3. Statistical Analysis
For each numeric column:
- Central tendency (mean, median, mode)
- Dispersion (std dev, IQR, range)
- Distribution shape (skewness, kurtosis)
- Outlier count
### 4. Categorical Analysis
For each categorical column:
- Unique values count
- Top/bottom categories
- Frequency distribution
- Category balance assessment
### 5. Correlation Analysis
- Correlation matrix with significance
- Strongest relationships highlighted
- Multicollinearity warnings
### 6. Time-Based Analysis
If datetime column detected:
- Trend direction and strength
- Seasonality patterns
- Year-over-year comparisons
- Growth rate calculations
### 7. Visualizations
Auto-generated charts saved to report:
- Distribution plots
- Trend charts
- Comparison charts
- Correlation heatmaps
### 8. Recommendations
Data-driven suggestions:
- Columns needing attention
- Potential data quality fixes
- Analysis suggestions
- Business implications
## Chart Styles
```python
# Available styles
styles = ['business', 'scientific', 'minimal', 'dark', 'colorful']
storyteller.generate_report(chart_style='business')
```
## Configuration
```python
storyteller = DataStoryteller(df)
# Configure analysis
storyteller.config.update({
'max_categories': 20, # Max categories to show
'outlier_method': 'iqr', # 'iqr', 'zscore', 'isolation'
'correlation_threshold': 0.5,
'significance_level': 0.05,
'date_format': 'auto', # Or specify like '%Y-%m-%d'
'language': 'en', # Narrative language
})
```
## Supported File Formats
| Format | Extension | Notes |
|--------|-----------|-------|
| CSV | .csv | Auto-detect delimiter |
| Excel | .xlsx, .xls | Multi-sheet support |
| JSON | .json | Records or columnar |
| Parquet | .parquet | For large datasets |
| TSV | .tsv | Tab-separated |
## Example Output
### Sample Executive Summary
> "This dataset contains 10,847 records across 15 columns, covering sales transactions from January 2023 to December 2024. Revenue shows a strong upward trend (+23% YoY) with clear seasonal peaks in Q4. The top 3 product categories account for 67% of total revenue. Notable finding: Customer acquisition cost has increased 15% while retention rate dropped 8%, suggesting potential profitability concerns worth investigating."
### Sample Insight
> "Strong correlation detected between marketing_spend and new_customers (r=0.78, p<0.001). However, this relationship weakens significantly after $50K monthly spend, suggesting diminishing returns beyond this threshold."
## Best Practices
1. **Clean data first**: Remove obvious errors before analysis
2. **Name columns clearly**: Helps auto-detection and narratives
3. **Include dates**: Enables time-series analysis
4. **Provide context**: Tell the storyteller what the data represents
## Limitations
- Maximum recommended: 1M rows, 100 columns
- Complex nested data may need flattening
- Images/binary data not supported
- PDF export requires reportlab package
## Dependencies
```
pandas>=2.0.0
numpy>=1.24.0
matplotlib>=3.7.0
seaborn>=0.12.0
scipy>=1.10.0
reportlab>=4.0.0
openpyxl>=3.1.0
```
This skill transforms CSV or Excel data into polished narrative reports with auto-generated insights, visualizations, and PDF export. It detects column types, data quality issues, relationships, and time-series patterns, then produces plain-English summaries and actionable recommendations. Output includes statistical analyses, charts, and exportable PDF/HTML reports.
Upload a CSV, Excel, or DataFrame and the skill auto-detects column types, missing values, duplicates, outliers, and relationships. It generates statistical summaries for numeric fields, frequency analyses for categorical fields, correlation matrices, and time-series decomposition when a date column exists. Charts are produced automatically (histograms, box plots, line charts, heatmaps), and a narrative engine converts findings into executive summaries, insights, and recommendations. Export options include PDF, HTML with interactive charts, and image files for visualizations.
What file formats are supported?
CSV, Excel (.xlsx/.xls), JSON, Parquet, and TSV are supported; multi-sheet Excel is handled automatically.
Can I customize analysis parameters?
Yes. You can set options like outlier method, correlation threshold, significance level, max categories, chart style, and date format via the configuration API.