home / skills / deletexiumu / agentskills-hub / wechat-daily-report

wechat-daily-report skill

/skills/private/wechat-daily-report

This skill generates a structured today WeChat report from local data, summarizing stats, to-dos, and amusing anecdotes for clear daily insights.

npx playbooks add skill deletexiumu/agentskills-hub --skill wechat-daily-report

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
3.4 KB
---
name: wechat-daily-report
description: 生成微信聊天今日报告,包含数据统计、待办事项提炼、趣事吃瓜整理。适用于"微信日报"、"今日微信报告"、"聊天记录分析"等场景。
---

# 目标

从本地 DuckDB 读取微信聊天记录,生成结构化的今日报告 Markdown 文件,包含:
- 数据概览(消息总数、活跃聊天、时间分布)
- **待办事项**:按优先级分类,概括提炼需要跟进的工作
- **趣事吃瓜**:整理成完整故事,而非零碎消息
- 幽默总结收尾

# 流程

## 第一步:提取原始数据

运行脚本获取当日聊天数据:

```bash
python3 scripts/extract_data.py [--date YYYY-MM-DD] [--db PATH]
```

脚本会输出:
1. 数据统计(消息数、活跃度、时间分布)
2. 工作群完整对话(用于分析待办)
3. 非工作群对话(用于提取趣事)

## 第二步:概括提炼(AI 完成)

根据原始数据,分析并概括:

### 待办事项提炼规则

1. **识别待办来源**:
   - 被 @淇奥 的消息
   - 包含问题/故障/请求的对话
   - 需要确认/跟进/反馈的事项

2. **按优先级分类**:
   - 🔴 需立即处理:今天要做的、已答应的
   - 🟡 本周跟进:有明确时间节点的
   - 🟢 已解决/知悉:已完成或仅需知悉的

3. **格式要求**:
   ```markdown
   1. **事项标题**
      - 来源:群名/联系人 + 时间
      - 具体内容描述
      - 状态:当前进展
   ```

### 趣事吃瓜提炼规则

1. **识别有趣内容**:
   - 群友热议的话题(多人参与讨论)
   - 包含吃瓜/八卦/搞笑关键词
   - 有完整故事线的对话

2. **整理成故事**:
   - 给每个故事起标题 + emoji
   - 概括事件经过,保留精彩原话
   - 突出笑点/槽点

3. **格式要求**:
   ```markdown
   ### 🍉 故事标题

   故事概括描述,**加粗关键信息**,保留群友精彩原话用引用格式。
   ```

### 今日总结

用一句幽默的话收尾,结合当天的待办和趣事,例如:
> 33 个工作群在线 battle,Git 文件夹还没建,但最重要的是——玩剑网三的红包领不了。

## 第三步:生成报告

将分析结果整理成完整的 Markdown 报告,保存到指定目录。

# 报告模板

```markdown
# 微信日报 (YYYY-MM-DD 周X)

## 一、数据概览
| 指标 | 数值 |
|------|------|
| **消息总数** | X 条 |
| **活跃聊天** | X 个 |
| **活跃人数** | X 人 |
| **峰值时段** | XX:00 (X条) |

## 二、聊天活跃度 TOP 10
(表格)

## 三、消息类型分布
(列表)

## 四、待办事项
### 🔴 需立即处理
### 🟡 本周跟进
### 🟢 已解决/知悉

## 五、趣事吃瓜
### 🍉 故事1
### 📱 故事2
...

## 六、活跃发送者 TOP 10
(表格)

## 七、消息时间分布
(柱状图)

## 今日总结
> 幽默收尾语

---
*报告生成时间: YYYY-MM-DD HH:MM:SS*
```

# 护栏

- 只读操作,不修改数据库
- 待办事项只提取工作相关聊天
- 趣事吃瓜不包含敏感/隐私内容
- 报告默认输出到当前目录

# 资源

- `scripts/extract_data.py`:数据提取脚本
- `scripts/generate_report.py`:基础报告生成脚本(统计部分)

# 使用示例

```bash
# 1. 提取今日数据
python3 scripts/extract_data.py

# 2. AI 根据输出概括提炼,生成最终报告

# 或者直接让 AI 生成(推荐)
# "帮我生成今日微信报告"
```

Overview

This skill generates a structured WeChat daily report in Markdown from local chat data. It summarizes message statistics, extracts and prioritizes work-related todos, organizes entertaining conversation stories, and ends with a short humorous wrap-up. The report is ready to save to the current directory for review or archival.

How this skill works

The skill reads today’s chat records from a local DuckDB snapshot produced by the extraction script, then computes activity metrics and conversation-level groupings. It uses rules to identify work-related follow-ups (mentions, requests, confirmations) and to detect multi-message storylines for fun items. Finally it composes a Markdown report with tables, prioritized todos, curated stories, and a one-line humorous summary.

When to use it

  • Generate a daily summary of WeChat activity for personal review
  • Extract and prioritize actionable items from work group chats
  • Collect and present amusing group conversations as readable stories
  • Archive daily chat metrics for trends and reporting
  • Quickly produce a shareable Markdown report of today’s chats

Best practices

  • Run the data extraction step first to ensure accurate, up-to-date DuckDB input
  • Limit todo extraction to work groups to avoid false positives from casual chats
  • Review auto-extracted todos before acting—AI highlights likely follow-ups but may miss context
  • Filter out or redact any sensitive content when saving or sharing the report
  • Use the generated Markdown as a baseline; edit titles or priorities to reflect real-world urgency

Example use cases

  • Morning briefing: generate today’s WeChat report to plan the day’s tasks and meetings
  • End-of-day recap: capture completed items and unresolved todos for handover
  • Team lead summary: share activity highlights and pending items from work groups
  • Social digest: collect top three amusing group stories to post in a newsletter or personal log
  • Trend tracking: save daily reports to monitor activity spikes and recurring todo patterns

FAQ

Which data source does the skill read from?

It reads chat records from a local DuckDB exported by the data extraction script; the report is read-only and does not modify the database.

How are todos prioritized?

Todos are classified by rules: @mentions and direct requests are high priority, items with explicit dates are medium, and completed or informational items are low priority; the output groups them as 🔴/🟡/🟢.

Can the fun stories include private content?

No. The skill excludes sensitive or private content and only includes stories that are safe to present, summarizing and quoting non-sensitive highlights where appropriate.