home / skills / davila7 / claude-code-templates / prompt-engineering-outlines

This skill helps guarantee valid JSON/XML/code outputs using CFG-FSM constraints and Pydantic models for fast, type-safe structured generation.

This is most likely a fork of the outlines skill from orchestra-research
npx playbooks add skill davila7/claude-code-templates --skill prompt-engineering-outlines

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
15.6 KB
---
name: outlines
description: Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Prompt Engineering, Outlines, Structured Generation, JSON Schema, Pydantic, Local Models, Grammar-Based Generation, vLLM, Transformers, Type Safety]
dependencies: [outlines, transformers, vllm, pydantic]
---

# Outlines: Structured Text Generation

## When to Use This Skill

Use Outlines when you need to:
- **Guarantee valid JSON/XML/code** structure during generation
- **Use Pydantic models** for type-safe outputs
- **Support local models** (Transformers, llama.cpp, vLLM)
- **Maximize inference speed** with zero-overhead structured generation
- **Generate against JSON schemas** automatically
- **Control token sampling** at the grammar level

**GitHub Stars**: 8,000+ | **From**: dottxt.ai (formerly .txt)

## Installation

```bash
# Base installation
pip install outlines

# With specific backends
pip install outlines transformers  # Hugging Face models
pip install outlines llama-cpp-python  # llama.cpp
pip install outlines vllm  # vLLM for high-throughput
```

## Quick Start

### Basic Example: Classification

```python
import outlines
from typing import Literal

# Load model
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")

# Generate with type constraint
prompt = "Sentiment of 'This product is amazing!': "
generator = outlines.generate.choice(model, ["positive", "negative", "neutral"])
sentiment = generator(prompt)

print(sentiment)  # "positive" (guaranteed one of these)
```

### With Pydantic Models

```python
from pydantic import BaseModel
import outlines

class User(BaseModel):
    name: str
    age: int
    email: str

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")

# Generate structured output
prompt = "Extract user: John Doe, 30 years old, [email protected]"
generator = outlines.generate.json(model, User)
user = generator(prompt)

print(user.name)   # "John Doe"
print(user.age)    # 30
print(user.email)  # "[email protected]"
```

## Core Concepts

### 1. Constrained Token Sampling

Outlines uses Finite State Machines (FSM) to constrain token generation at the logit level.

**How it works:**
1. Convert schema (JSON/Pydantic/regex) to context-free grammar (CFG)
2. Transform CFG into Finite State Machine (FSM)
3. Filter invalid tokens at each step during generation
4. Fast-forward when only one valid token exists

**Benefits:**
- **Zero overhead**: Filtering happens at token level
- **Speed improvement**: Fast-forward through deterministic paths
- **Guaranteed validity**: Invalid outputs impossible

```python
import outlines

# Pydantic model -> JSON schema -> CFG -> FSM
class Person(BaseModel):
    name: str
    age: int

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")

# Behind the scenes:
# 1. Person -> JSON schema
# 2. JSON schema -> CFG
# 3. CFG -> FSM
# 4. FSM filters tokens during generation

generator = outlines.generate.json(model, Person)
result = generator("Generate person: Alice, 25")
```

### 2. Structured Generators

Outlines provides specialized generators for different output types.

#### Choice Generator

```python
# Multiple choice selection
generator = outlines.generate.choice(
    model,
    ["positive", "negative", "neutral"]
)

sentiment = generator("Review: This is great!")
# Result: One of the three choices
```

#### JSON Generator

```python
from pydantic import BaseModel

class Product(BaseModel):
    name: str
    price: float
    in_stock: bool

# Generate valid JSON matching schema
generator = outlines.generate.json(model, Product)
product = generator("Extract: iPhone 15, $999, available")

# Guaranteed valid Product instance
print(type(product))  # <class '__main__.Product'>
```

#### Regex Generator

```python
# Generate text matching regex
generator = outlines.generate.regex(
    model,
    r"[0-9]{3}-[0-9]{3}-[0-9]{4}"  # Phone number pattern
)

phone = generator("Generate phone number:")
# Result: "555-123-4567" (guaranteed to match pattern)
```

#### Integer/Float Generators

```python
# Generate specific numeric types
int_generator = outlines.generate.integer(model)
age = int_generator("Person's age:")  # Guaranteed integer

float_generator = outlines.generate.float(model)
price = float_generator("Product price:")  # Guaranteed float
```

### 3. Model Backends

Outlines supports multiple local and API-based backends.

#### Transformers (Hugging Face)

```python
import outlines

# Load from Hugging Face
model = outlines.models.transformers(
    "microsoft/Phi-3-mini-4k-instruct",
    device="cuda"  # Or "cpu"
)

# Use with any generator
generator = outlines.generate.json(model, YourModel)
```

#### llama.cpp

```python
# Load GGUF model
model = outlines.models.llamacpp(
    "./models/llama-3.1-8b-instruct.Q4_K_M.gguf",
    n_gpu_layers=35
)

generator = outlines.generate.json(model, YourModel)
```

#### vLLM (High Throughput)

```python
# For production deployments
model = outlines.models.vllm(
    "meta-llama/Llama-3.1-8B-Instruct",
    tensor_parallel_size=2  # Multi-GPU
)

generator = outlines.generate.json(model, YourModel)
```

#### OpenAI (Limited Support)

```python
# Basic OpenAI support
model = outlines.models.openai(
    "gpt-4o-mini",
    api_key="your-api-key"
)

# Note: Some features limited with API models
generator = outlines.generate.json(model, YourModel)
```

### 4. Pydantic Integration

Outlines has first-class Pydantic support with automatic schema translation.

#### Basic Models

```python
from pydantic import BaseModel, Field

class Article(BaseModel):
    title: str = Field(description="Article title")
    author: str = Field(description="Author name")
    word_count: int = Field(description="Number of words", gt=0)
    tags: list[str] = Field(description="List of tags")

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, Article)

article = generator("Generate article about AI")
print(article.title)
print(article.word_count)  # Guaranteed > 0
```

#### Nested Models

```python
class Address(BaseModel):
    street: str
    city: str
    country: str

class Person(BaseModel):
    name: str
    age: int
    address: Address  # Nested model

generator = outlines.generate.json(model, Person)
person = generator("Generate person in New York")

print(person.address.city)  # "New York"
```

#### Enums and Literals

```python
from enum import Enum
from typing import Literal

class Status(str, Enum):
    PENDING = "pending"
    APPROVED = "approved"
    REJECTED = "rejected"

class Application(BaseModel):
    applicant: str
    status: Status  # Must be one of enum values
    priority: Literal["low", "medium", "high"]  # Must be one of literals

generator = outlines.generate.json(model, Application)
app = generator("Generate application")

print(app.status)  # Status.PENDING (or APPROVED/REJECTED)
```

## Common Patterns

### Pattern 1: Data Extraction

```python
from pydantic import BaseModel
import outlines

class CompanyInfo(BaseModel):
    name: str
    founded_year: int
    industry: str
    employees: int

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, CompanyInfo)

text = """
Apple Inc. was founded in 1976 in the technology industry.
The company employs approximately 164,000 people worldwide.
"""

prompt = f"Extract company information:\n{text}\n\nCompany:"
company = generator(prompt)

print(f"Name: {company.name}")
print(f"Founded: {company.founded_year}")
print(f"Industry: {company.industry}")
print(f"Employees: {company.employees}")
```

### Pattern 2: Classification

```python
from typing import Literal
import outlines

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")

# Binary classification
generator = outlines.generate.choice(model, ["spam", "not_spam"])
result = generator("Email: Buy now! 50% off!")

# Multi-class classification
categories = ["technology", "business", "sports", "entertainment"]
category_gen = outlines.generate.choice(model, categories)
category = category_gen("Article: Apple announces new iPhone...")

# With confidence
class Classification(BaseModel):
    label: Literal["positive", "negative", "neutral"]
    confidence: float

classifier = outlines.generate.json(model, Classification)
result = classifier("Review: This product is okay, nothing special")
```

### Pattern 3: Structured Forms

```python
class UserProfile(BaseModel):
    full_name: str
    age: int
    email: str
    phone: str
    country: str
    interests: list[str]

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, UserProfile)

prompt = """
Extract user profile from:
Name: Alice Johnson
Age: 28
Email: [email protected]
Phone: 555-0123
Country: USA
Interests: hiking, photography, cooking
"""

profile = generator(prompt)
print(profile.full_name)
print(profile.interests)  # ["hiking", "photography", "cooking"]
```

### Pattern 4: Multi-Entity Extraction

```python
class Entity(BaseModel):
    name: str
    type: Literal["PERSON", "ORGANIZATION", "LOCATION"]

class DocumentEntities(BaseModel):
    entities: list[Entity]

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, DocumentEntities)

text = "Tim Cook met with Satya Nadella at Microsoft headquarters in Redmond."
prompt = f"Extract entities from: {text}"

result = generator(prompt)
for entity in result.entities:
    print(f"{entity.name} ({entity.type})")
```

### Pattern 5: Code Generation

```python
class PythonFunction(BaseModel):
    function_name: str
    parameters: list[str]
    docstring: str
    body: str

model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
generator = outlines.generate.json(model, PythonFunction)

prompt = "Generate a Python function to calculate factorial"
func = generator(prompt)

print(f"def {func.function_name}({', '.join(func.parameters)}):")
print(f'    """{func.docstring}"""')
print(f"    {func.body}")
```

### Pattern 6: Batch Processing

```python
def batch_extract(texts: list[str], schema: type[BaseModel]):
    """Extract structured data from multiple texts."""
    model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")
    generator = outlines.generate.json(model, schema)

    results = []
    for text in texts:
        result = generator(f"Extract from: {text}")
        results.append(result)

    return results

class Person(BaseModel):
    name: str
    age: int

texts = [
    "John is 30 years old",
    "Alice is 25 years old",
    "Bob is 40 years old"
]

people = batch_extract(texts, Person)
for person in people:
    print(f"{person.name}: {person.age}")
```

## Backend Configuration

### Transformers

```python
import outlines

# Basic usage
model = outlines.models.transformers("microsoft/Phi-3-mini-4k-instruct")

# GPU configuration
model = outlines.models.transformers(
    "microsoft/Phi-3-mini-4k-instruct",
    device="cuda",
    model_kwargs={"torch_dtype": "float16"}
)

# Popular models
model = outlines.models.transformers("meta-llama/Llama-3.1-8B-Instruct")
model = outlines.models.transformers("mistralai/Mistral-7B-Instruct-v0.3")
model = outlines.models.transformers("Qwen/Qwen2.5-7B-Instruct")
```

### llama.cpp

```python
# Load GGUF model
model = outlines.models.llamacpp(
    "./models/llama-3.1-8b.Q4_K_M.gguf",
    n_ctx=4096,         # Context window
    n_gpu_layers=35,    # GPU layers
    n_threads=8         # CPU threads
)

# Full GPU offload
model = outlines.models.llamacpp(
    "./models/model.gguf",
    n_gpu_layers=-1  # All layers on GPU
)
```

### vLLM (Production)

```python
# Single GPU
model = outlines.models.vllm("meta-llama/Llama-3.1-8B-Instruct")

# Multi-GPU
model = outlines.models.vllm(
    "meta-llama/Llama-3.1-70B-Instruct",
    tensor_parallel_size=4  # 4 GPUs
)

# With quantization
model = outlines.models.vllm(
    "meta-llama/Llama-3.1-8B-Instruct",
    quantization="awq"  # Or "gptq"
)
```

## Best Practices

### 1. Use Specific Types

```python
# ✅ Good: Specific types
class Product(BaseModel):
    name: str
    price: float  # Not str
    quantity: int  # Not str
    in_stock: bool  # Not str

# ❌ Bad: Everything as string
class Product(BaseModel):
    name: str
    price: str  # Should be float
    quantity: str  # Should be int
```

### 2. Add Constraints

```python
from pydantic import Field

# ✅ Good: With constraints
class User(BaseModel):
    name: str = Field(min_length=1, max_length=100)
    age: int = Field(ge=0, le=120)
    email: str = Field(pattern=r"^[\w\.-]+@[\w\.-]+\.\w+$")

# ❌ Bad: No constraints
class User(BaseModel):
    name: str
    age: int
    email: str
```

### 3. Use Enums for Categories

```python
# ✅ Good: Enum for fixed set
class Priority(str, Enum):
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"

class Task(BaseModel):
    title: str
    priority: Priority

# ❌ Bad: Free-form string
class Task(BaseModel):
    title: str
    priority: str  # Can be anything
```

### 4. Provide Context in Prompts

```python
# ✅ Good: Clear context
prompt = """
Extract product information from the following text.
Text: iPhone 15 Pro costs $999 and is currently in stock.
Product:
"""

# ❌ Bad: Minimal context
prompt = "iPhone 15 Pro costs $999 and is currently in stock."
```

### 5. Handle Optional Fields

```python
from typing import Optional

# ✅ Good: Optional fields for incomplete data
class Article(BaseModel):
    title: str  # Required
    author: Optional[str] = None  # Optional
    date: Optional[str] = None  # Optional
    tags: list[str] = []  # Default empty list

# Can succeed even if author/date missing
```

## Comparison to Alternatives

| Feature | Outlines | Instructor | Guidance | LMQL |
|---------|----------|------------|----------|------|
| Pydantic Support | ✅ Native | ✅ Native | ❌ No | ❌ No |
| JSON Schema | ✅ Yes | ✅ Yes | ⚠️ Limited | ✅ Yes |
| Regex Constraints | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes |
| Local Models | ✅ Full | ⚠️ Limited | ✅ Full | ✅ Full |
| API Models | ⚠️ Limited | ✅ Full | ✅ Full | ✅ Full |
| Zero Overhead | ✅ Yes | ❌ No | ⚠️ Partial | ✅ Yes |
| Automatic Retrying | ❌ No | ✅ Yes | ❌ No | ❌ No |
| Learning Curve | Low | Low | Low | High |

**When to choose Outlines:**
- Using local models (Transformers, llama.cpp, vLLM)
- Need maximum inference speed
- Want Pydantic model support
- Require zero-overhead structured generation
- Control token sampling process

**When to choose alternatives:**
- Instructor: Need API models with automatic retrying
- Guidance: Need token healing and complex workflows
- LMQL: Prefer declarative query syntax

## Performance Characteristics

**Speed:**
- **Zero overhead**: Structured generation as fast as unconstrained
- **Fast-forward optimization**: Skips deterministic tokens
- **1.2-2x faster** than post-generation validation approaches

**Memory:**
- FSM compiled once per schema (cached)
- Minimal runtime overhead
- Efficient with vLLM for high throughput

**Accuracy:**
- **100% valid outputs** (guaranteed by FSM)
- No retry loops needed
- Deterministic token filtering

## Resources

- **Documentation**: https://outlines-dev.github.io/outlines
- **GitHub**: https://github.com/outlines-dev/outlines (8k+ stars)
- **Discord**: https://discord.gg/R9DSu34mGd
- **Blog**: https://blog.dottxt.co

## See Also

- `references/json_generation.md` - Comprehensive JSON and Pydantic patterns
- `references/backends.md` - Backend-specific configuration
- `references/examples.md` - Production-ready examples


Overview

This skill guarantees valid JSON, XML, and other structured code outputs during generation using Outlines — dottxt.ai’s structured generation library. It integrates Pydantic models for type-safe outputs, supports local backends (Transformers, llama.cpp, vLLM), and focuses on maximizing inference speed with token-level constraints and fast-forwarding.

How this skill works

Outlines converts schemas (Pydantic/JSON/regex) into a context-free grammar and then into a finite state machine that filters invalid tokens at generation time. Generators (choice, json, regex, integer, float) drive the model with FSM-constrained sampling so outputs always match the target type or schema. Backends include local Transformers, llama.cpp, vLLM and limited API support; performance features like deterministic fast-forwarding minimize overhead.

When to use it

  • You need guaranteed-valid JSON, XML, or code structures from an LLM.
  • You want type-safe outputs via Pydantic models for downstream processing.
  • You run models locally (Hugging Face Transformers, llama.cpp, vLLM) and need high throughput.
  • You require strict format control (regex, enums, literals) for integrations or data pipelines.
  • You want zero-overhead, token-level constraints to speed inference and reduce post-validation.

Best practices

  • Model your output with specific types and constraints (use floats/ints/bools, not strings).
  • Prefer Enums or Literal types for closed-choice fields to eliminate ambiguity.
  • Add Pydantic Field constraints (min/max, patterns) to narrow valid outputs and improve accuracy.
  • Provide clear prompt context and examples so the FSM can resolve deterministic paths quickly.
  • Use local vLLM or proper GPU config for production throughput; use quantization or n_gpu_layers for memory-limited environments.

Example use cases

  • Extract structured entities from documents into nested Pydantic models for indexing.
  • Generate validated API responses (JSON) that can be directly parsed and stored without extra validation.
  • Perform multi-class or literal classification with guaranteed single-choice outputs.
  • Produce code snippets or function metadata that conform to a defined schema for automated tooling.
  • Batch-process text inputs to produce typed records for ETL pipelines with no downstream parsing errors.

FAQ

Does Outlines work with Hugging Face models locally?

Yes. It supports Transformers backends with device and dtype options for CPU/GPU usage.

Can I enforce regex or numeric constraints?

Yes. Outlines provides regex, integer, and float generators and converts schema constraints into the FSM to guarantee matches.