home / skills / davila7 / claude-code-templates / post-training-openrlhf
/cli-tool/components/skills/ai-research/post-training-openrlhf
This skill accelerates RLHF training for large models using Ray and vLLM, enabling PPO, GRPO, RLOO, and DPO workflows across multi-node GPUs.
npx playbooks add skill davila7/claude-code-templates --skill post-training-openrlhfReview the files below or copy the command above to add this skill to your agents.
---
name: openrlhf-training
description: High-performance RLHF framework with Ray+vLLM acceleration. Use for PPO, GRPO, RLOO, DPO training of large models (7B-70B+). Built on Ray, vLLM, ZeRO-3. 2× faster than DeepSpeedChat with distributed architecture and GPU resource sharing.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Post-Training, OpenRLHF, RLHF, PPO, GRPO, RLOO, DPO, Ray, vLLM, Distributed Training, Large Models, ZeRO-3]
dependencies: [openrlhf, ray, vllm, torch, transformers, deepspeed]
---
# OpenRLHF - High-Performance RLHF Training
## Quick start
OpenRLHF is a Ray-based RLHF framework optimized for distributed training with vLLM inference acceleration.
**Installation**:
```bash
# Launch Docker container
docker run --runtime=nvidia -it --rm --shm-size="10g" --cap-add=SYS_ADMIN \
-v $PWD:/openrlhf nvcr.io/nvidia/pytorch:25.02-py3 bash
# Uninstall conflicts
sudo pip uninstall xgboost transformer_engine flash_attn pynvml -y
# Install OpenRLHF with vLLM
pip install openrlhf[vllm]
```
**PPO Training** (Hybrid Engine):
```bash
ray start --head --node-ip-address 0.0.0.0 --num-gpus 8
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env-json='{"working_dir": "/openrlhf"}' \
-- python3 -m openrlhf.cli.train_ppo_ray \
--ref_num_nodes 1 --ref_num_gpus_per_node 8 \
--reward_num_nodes 1 --reward_num_gpus_per_node 8 \
--critic_num_nodes 1 --critic_num_gpus_per_node 8 \
--actor_num_nodes 1 --actor_num_gpus_per_node 8 \
--vllm_num_engines 4 --vllm_tensor_parallel_size 2 \
--colocate_all_models \
--vllm_gpu_memory_utilization 0.5 \
--pretrain OpenRLHF/Llama-3-8b-sft-mixture \
--reward_pretrain OpenRLHF/Llama-3-8b-rm-700k \
--save_path ./output/llama3-8b-rlhf \
--micro_train_batch_size 8 --train_batch_size 128 \
--micro_rollout_batch_size 16 --rollout_batch_size 1024 \
--max_epochs 1 --prompt_max_len 1024 --generate_max_len 1024 \
--zero_stage 3 --bf16 \
--actor_learning_rate 5e-7 --critic_learning_rate 9e-6 \
--init_kl_coef 0.01 --normalize_reward \
--gradient_checkpointing --packing_samples \
--vllm_enable_sleep --deepspeed_enable_sleep
```
**GRPO Training** (Group Normalized Policy Optimization):
```bash
# Same command as PPO, but add:
--advantage_estimator group_norm
```
## Common workflows
### Workflow 1: Full RLHF pipeline (SFT → Reward Model → PPO)
**Step 1: Train reward model** (DPO):
```bash
deepspeed --module openrlhf.cli.train_rm \
--save_path ./output/llama3-8b-rm \
--save_steps -1 --logging_steps 1 \
--eval_steps -1 --train_batch_size 256 \
--micro_train_batch_size 1 --pretrain meta-llama/Meta-Llama-3-8B \
--bf16 --max_epochs 1 --max_len 8192 \
--zero_stage 3 --learning_rate 9e-6 \
--dataset OpenRLHF/preference_dataset_mixture2_and_safe_pku \
--apply_chat_template --chosen_key chosen \
--rejected_key rejected --flash_attn --gradient_checkpointing
```
**Step 2: PPO training**:
```bash
ray start --head --node-ip-address 0.0.0.0 --num-gpus 8
ray job submit --address="http://127.0.0.1:8265" \
-- python3 -m openrlhf.cli.train_ppo_ray \
--ref_num_nodes 1 --ref_num_gpus_per_node 8 \
--reward_num_nodes 1 --reward_num_gpus_per_node 8 \
--critic_num_nodes 1 --critic_num_gpus_per_node 8 \
--actor_num_nodes 1 --actor_num_gpus_per_node 8 \
--vllm_num_engines 4 --vllm_tensor_parallel_size 2 \
--colocate_all_models \
--pretrain OpenRLHF/Llama-3-8b-sft-mixture \
--reward_pretrain ./output/llama3-8b-rm \
--save_path ./output/llama3-8b-ppo \
--micro_train_batch_size 8 --train_batch_size 128 \
--micro_rollout_batch_size 16 --rollout_batch_size 1024 \
--max_epochs 1 --prompt_max_len 1024 --generate_max_len 1024 \
--zero_stage 3 --bf16 \
--actor_learning_rate 5e-7 --critic_learning_rate 9e-6 \
--init_kl_coef 0.01 --normalize_reward \
--vllm_enable_sleep --deepspeed_enable_sleep
```
### Workflow 2: GRPO training (no critic model needed)
Memory-efficient alternative to PPO:
```bash
ray job submit --address="http://127.0.0.1:8265" \
-- python3 -m openrlhf.cli.train_ppo_ray \
--advantage_estimator group_norm \
--ref_num_nodes 1 --ref_num_gpus_per_node 8 \
--reward_num_nodes 1 --reward_num_gpus_per_node 8 \
--actor_num_nodes 1 --actor_num_gpus_per_node 8 \
--vllm_num_engines 4 --vllm_tensor_parallel_size 2 \
--colocate_all_models \
--pretrain OpenRLHF/Llama-3-8b-sft-mixture \
--reward_pretrain OpenRLHF/Llama-3-8b-rm-700k \
--save_path ./output/llama3-8b-grpo \
--micro_train_batch_size 8 --train_batch_size 128 \
--micro_rollout_batch_size 16 --rollout_batch_size 1024 \
--max_epochs 1 --bf16 \
--actor_learning_rate 5e-7 \
--init_kl_coef 0.01 --use_kl_loss --kl_estimator k3 \
--normalize_reward --no_advantage_std_norm
```
**Key GRPO parameters**:
- `--advantage_estimator group_norm` - Enables GRPO
- `--use_kl_loss` - KL loss from GRPO paper
- `--kl_estimator k3` - Loss function (k2 ≈ k1)
- `--no_advantage_std_norm` - Disables std normalization
### Workflow 3: DPO training (preference optimization)
Simpler alternative without reward model:
```bash
deepspeed --module openrlhf.cli.train_dpo \
--save_path ./output/llama3-8b-dpo \
--save_steps -1 --logging_steps 1 \
--eval_steps -1 --train_batch_size 256 \
--micro_train_batch_size 2 --pretrain meta-llama/Meta-Llama-3-8B \
--bf16 --max_epochs 1 --max_len 8192 \
--zero_stage 3 --learning_rate 5e-7 --beta 0.1 \
--dataset OpenRLHF/preference_dataset_mixture2_and_safe_pku \
--apply_chat_template --chosen_key chosen \
--rejected_key rejected --flash_attn --gradient_checkpointing
```
## When to use vs alternatives
**Use OpenRLHF when**:
- Training large models (7B-70B+) with RL
- Need vLLM inference acceleration
- Want distributed architecture with Ray
- Have multi-node GPU cluster
- Need PPO/GRPO/RLOO/DPO in one framework
**Algorithm selection**:
- **PPO**: Maximum control, best for complex rewards
- **GRPO**: Memory-efficient, no critic needed
- **RLOO**: Modified PPO with per-token KL
- **REINFORCE++**: More stable than GRPO, faster than PPO
- **DPO**: Simplest, no reward model needed
**Use alternatives instead**:
- **TRL**: Single-node training, simpler API
- **veRL**: ByteDance's framework for 671B models
- **DeepSpeedChat**: Integrated with DeepSpeed ecosystem
## Common issues
**Issue: GPU OOM with large models**
Disable model colocation:
```bash
# Remove --colocate_all_models flag
# Allocate separate GPUs for each model
--actor_num_gpus_per_node 8 \
--critic_num_gpus_per_node 8 \
--reward_num_gpus_per_node 8 \
--ref_num_gpus_per_node 8
```
**Issue: DeepSpeed GPU index out of range**
Set environment variable:
```bash
export RAY_EXPERIMENTAL_NOSET_CUDA_VISIBLE_DEVICES=1
```
**Issue: Training instability**
Use Hybrid Engine instead of async:
```bash
--colocate_all_models \
--vllm_enable_sleep \
--deepspeed_enable_sleep
```
Adjust KL coefficient:
```bash
--init_kl_coef 0.05 # Increase from 0.01
```
**Issue: Slow generation during PPO**
Enable vLLM acceleration:
```bash
--vllm_num_engines 4 \
--vllm_tensor_parallel_size 2 \
--vllm_gpu_memory_utilization 0.5
```
## Advanced topics
**Hybrid Engine GPU sharing**: See [references/hybrid-engine.md](references/hybrid-engine.md) for vLLM sleep mode, DeepSpeed sleep mode, and optimal node allocation.
**Algorithm comparison**: See [references/algorithm-comparison.md](references/algorithm-comparison.md) for PPO vs GRPO vs RLOO vs REINFORCE++ benchmarks and hyperparameters.
**Multi-node setup**: See [references/multi-node-training.md](references/multi-node-training.md) for Ray cluster configuration and fault tolerance.
**Custom reward functions**: See [references/custom-rewards.md](references/custom-rewards.md) for reinforced fine-tuning and agent RLHF.
## Hardware requirements
- **GPU**: NVIDIA A100/H100 recommended
- **VRAM**:
- 7B model: 8× A100 40GB (Hybrid Engine)
- 70B model: 48× A100 80GB (vLLM:Actor:Critic = 1:1:1)
- **Multi-node**: Ray cluster with InfiniBand recommended
- **Docker**: NVIDIA PyTorch container 25.02+
**Performance**:
- 2× faster than DeepSpeedChat
- vLLM inference acceleration
- Hybrid Engine minimizes GPU idle time
## Resources
- Docs: https://github.com/OpenRLHF/OpenRLHF
- Paper: https://arxiv.org/abs/2405.11143
- Examples: https://github.com/OpenRLHF/OpenRLHF/tree/main/examples
- Discord: Community support
This skill provides a high-performance RLHF training framework that combines Ray, vLLM, and ZeRO-3 for distributed fine-tuning of large language models (7B–70B+). It exposes CLI commands to configure and run PPO, GRPO, RLOO, and DPO pipelines with GPU resource sharing and vLLM inference acceleration. The architecture targets multi-node clusters and aims to deliver up to 2× speedups compared to DeepSpeedChat through a hybrid engine and GPU colocation strategies.
The skill orchestrates distributed training using Ray for cluster management, vLLM for fast batched generation, and DeepSpeed ZeRO-3 for memory-efficient model sharding. CLI entry points launch training jobs (SFT, reward model, PPO/GRPO/DPO) with options to colocate models, tune GPU allocation, enable vLLM sleep mode, and control KL and reward normalization. It supports hybrid engine setups where vLLM engines share GPU resources with DeepSpeed models to reduce idle time and speed up rollouts.
Which algorithm should I choose for my RLHF project?
Use PPO for maximum control and complex rewards, GRPO when memory is constrained (no critic), RLOO for per-token KL control, and DPO when you want preference optimization without a reward model.
How do I solve GPU OOMs when training large models?
Disable --colocate_all_models and assign separate GPUs per model, reduce batch sizes, or increase node/GPU counts. Also consider enabling ZeRO-3 and gradient checkpointing.