home / skills / davila7 / claude-code-templates / optimization-flash-attention
/cli-tool/components/skills/ai-research/optimization-flash-attention
This skill speeds up transformer attention using Flash Attention for 2-4x faster runs and 10-20x memory reduction on long sequences.
npx playbooks add skill davila7/claude-code-templates --skill optimization-flash-attentionReview the files below or copy the command above to add this skill to your agents.
---
name: optimizing-attention-flash
description: Optimizes transformer attention with Flash Attention for 2-4x speedup and 10-20x memory reduction. Use when training/running transformers with long sequences (>512 tokens), encountering GPU memory issues with attention, or need faster inference. Supports PyTorch native SDPA, flash-attn library, H100 FP8, and sliding window attention.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Optimization, Flash Attention, Attention Optimization, Memory Efficiency, Speed Optimization, Long Context, PyTorch, SDPA, H100, FP8, Transformers]
dependencies: [flash-attn, torch, transformers]
---
# Flash Attention - Fast Memory-Efficient Attention
## Quick start
Flash Attention provides 2-4x speedup and 10-20x memory reduction for transformer attention through IO-aware tiling and recomputation.
**PyTorch native (easiest, PyTorch 2.2+)**:
```python
import torch
import torch.nn.functional as F
q = torch.randn(2, 8, 512, 64, device='cuda', dtype=torch.float16) # [batch, heads, seq, dim]
k = torch.randn(2, 8, 512, 64, device='cuda', dtype=torch.float16)
v = torch.randn(2, 8, 512, 64, device='cuda', dtype=torch.float16)
# Automatically uses Flash Attention if available
out = F.scaled_dot_product_attention(q, k, v)
```
**flash-attn library (more features)**:
```bash
pip install flash-attn --no-build-isolation
```
```python
from flash_attn import flash_attn_func
# q, k, v: [batch, seqlen, nheads, headdim]
out = flash_attn_func(q, k, v, dropout_p=0.0, causal=True)
```
## Common workflows
### Workflow 1: Enable in existing PyTorch model
Copy this checklist:
```
Flash Attention Integration:
- [ ] Step 1: Check PyTorch version (≥2.2)
- [ ] Step 2: Enable Flash Attention backend
- [ ] Step 3: Verify speedup with profiling
- [ ] Step 4: Test accuracy matches baseline
```
**Step 1: Check PyTorch version**
```bash
python -c "import torch; print(torch.__version__)"
# Should be ≥2.2.0
```
If <2.2, upgrade:
```bash
pip install --upgrade torch
```
**Step 2: Enable Flash Attention backend**
Replace standard attention:
```python
# Before (standard attention)
attn_weights = torch.softmax(q @ k.transpose(-2, -1) / math.sqrt(d_k), dim=-1)
out = attn_weights @ v
# After (Flash Attention)
import torch.nn.functional as F
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
```
Force Flash Attention backend:
```python
with torch.backends.cuda.sdp_kernel(
enable_flash=True,
enable_math=False,
enable_mem_efficient=False
):
out = F.scaled_dot_product_attention(q, k, v)
```
**Step 3: Verify speedup with profiling**
```python
import torch.utils.benchmark as benchmark
def test_attention(use_flash):
q, k, v = [torch.randn(2, 8, 2048, 64, device='cuda', dtype=torch.float16) for _ in range(3)]
if use_flash:
with torch.backends.cuda.sdp_kernel(enable_flash=True):
return F.scaled_dot_product_attention(q, k, v)
else:
attn = (q @ k.transpose(-2, -1) / 8.0).softmax(dim=-1)
return attn @ v
# Benchmark
t_flash = benchmark.Timer(stmt='test_attention(True)', globals=globals())
t_standard = benchmark.Timer(stmt='test_attention(False)', globals=globals())
print(f"Flash: {t_flash.timeit(100).mean:.3f}s")
print(f"Standard: {t_standard.timeit(100).mean:.3f}s")
```
Expected: 2-4x speedup for sequences >512 tokens.
**Step 4: Test accuracy matches baseline**
```python
# Compare outputs
q, k, v = [torch.randn(1, 8, 512, 64, device='cuda', dtype=torch.float16) for _ in range(3)]
# Flash Attention
out_flash = F.scaled_dot_product_attention(q, k, v)
# Standard attention
attn_weights = torch.softmax(q @ k.transpose(-2, -1) / 8.0, dim=-1)
out_standard = attn_weights @ v
# Check difference
diff = (out_flash - out_standard).abs().max()
print(f"Max difference: {diff:.6f}")
# Should be <1e-3 for float16
```
### Workflow 2: Use flash-attn library for advanced features
For multi-query attention, sliding window, or H100 FP8.
Copy this checklist:
```
flash-attn Library Setup:
- [ ] Step 1: Install flash-attn library
- [ ] Step 2: Modify attention code
- [ ] Step 3: Enable advanced features
- [ ] Step 4: Benchmark performance
```
**Step 1: Install flash-attn library**
```bash
# NVIDIA GPUs (CUDA 12.0+)
pip install flash-attn --no-build-isolation
# Verify installation
python -c "from flash_attn import flash_attn_func; print('Success')"
```
**Step 2: Modify attention code**
```python
from flash_attn import flash_attn_func
# Input: [batch_size, seq_len, num_heads, head_dim]
# Transpose from [batch, heads, seq, dim] if needed
q = q.transpose(1, 2) # [batch, seq, heads, dim]
k = k.transpose(1, 2)
v = v.transpose(1, 2)
out = flash_attn_func(
q, k, v,
dropout_p=0.1,
causal=True, # For autoregressive models
window_size=(-1, -1), # No sliding window
softmax_scale=None # Auto-scale
)
out = out.transpose(1, 2) # Back to [batch, heads, seq, dim]
```
**Step 3: Enable advanced features**
Multi-query attention (shared K/V across heads):
```python
from flash_attn import flash_attn_func
# q: [batch, seq, num_q_heads, dim]
# k, v: [batch, seq, num_kv_heads, dim] # Fewer KV heads
out = flash_attn_func(q, k, v) # Automatically handles MQA
```
Sliding window attention (local attention):
```python
# Only attend to window of 256 tokens before/after
out = flash_attn_func(
q, k, v,
window_size=(256, 256), # (left, right) window
causal=True
)
```
**Step 4: Benchmark performance**
```python
import torch
from flash_attn import flash_attn_func
import time
q, k, v = [torch.randn(4, 4096, 32, 64, device='cuda', dtype=torch.float16) for _ in range(3)]
# Warmup
for _ in range(10):
_ = flash_attn_func(q, k, v)
# Benchmark
torch.cuda.synchronize()
start = time.time()
for _ in range(100):
out = flash_attn_func(q, k, v)
torch.cuda.synchronize()
end = time.time()
print(f"Time per iteration: {(end-start)/100*1000:.2f}ms")
print(f"Memory allocated: {torch.cuda.max_memory_allocated()/1e9:.2f}GB")
```
### Workflow 3: H100 FP8 optimization (FlashAttention-3)
For maximum performance on H100 GPUs.
```
FP8 Setup:
- [ ] Step 1: Verify H100 GPU available
- [ ] Step 2: Install flash-attn with FP8 support
- [ ] Step 3: Convert inputs to FP8
- [ ] Step 4: Run with FP8 attention
```
**Step 1: Verify H100 GPU**
```bash
nvidia-smi --query-gpu=name --format=csv
# Should show "H100" or "H800"
```
**Step 2: Install flash-attn with FP8 support**
```bash
pip install flash-attn --no-build-isolation
# FP8 support included for H100
```
**Step 3: Convert inputs to FP8**
```python
import torch
q = torch.randn(2, 4096, 32, 64, device='cuda', dtype=torch.float16)
k = torch.randn(2, 4096, 32, 64, device='cuda', dtype=torch.float16)
v = torch.randn(2, 4096, 32, 64, device='cuda', dtype=torch.float16)
# Convert to float8_e4m3 (FP8)
q_fp8 = q.to(torch.float8_e4m3fn)
k_fp8 = k.to(torch.float8_e4m3fn)
v_fp8 = v.to(torch.float8_e4m3fn)
```
**Step 4: Run with FP8 attention**
```python
from flash_attn import flash_attn_func
# FlashAttention-3 automatically uses FP8 kernels on H100
out = flash_attn_func(q_fp8, k_fp8, v_fp8)
# Result: ~1.2 PFLOPS, 1.5-2x faster than FP16
```
## When to use vs alternatives
**Use Flash Attention when:**
- Training transformers with sequences >512 tokens
- Running inference with long context (>2K tokens)
- GPU memory constrained (OOM with standard attention)
- Need 2-4x speedup without accuracy loss
- Using PyTorch 2.2+ or can install flash-attn
**Use alternatives instead:**
- **Standard attention**: Sequences <256 tokens (overhead not worth it)
- **xFormers**: Need more attention variants (not just speed)
- **Memory-efficient attention**: CPU inference (Flash Attention needs GPU)
## Common issues
**Issue: ImportError: cannot import flash_attn**
Install with no-build-isolation flag:
```bash
pip install flash-attn --no-build-isolation
```
Or install CUDA toolkit first:
```bash
conda install cuda -c nvidia
pip install flash-attn --no-build-isolation
```
**Issue: Slower than expected (no speedup)**
Flash Attention benefits increase with sequence length:
- <512 tokens: Minimal speedup (10-20%)
- 512-2K tokens: 2-3x speedup
- >2K tokens: 3-4x speedup
Check sequence length is sufficient.
**Issue: RuntimeError: CUDA error**
Verify GPU supports Flash Attention:
```python
import torch
print(torch.cuda.get_device_capability())
# Should be ≥(7, 5) for Turing+
```
Flash Attention requires:
- Ampere (A100, A10): ✅ Full support
- Turing (T4): ✅ Supported
- Volta (V100): ❌ Not supported
**Issue: Accuracy degradation**
Check dtype is float16 or bfloat16 (not float32):
```python
q = q.to(torch.float16) # Or torch.bfloat16
```
Flash Attention uses float16/bfloat16 for speed. Float32 not supported.
## Advanced topics
**Integration with HuggingFace Transformers**: See [references/transformers-integration.md](references/transformers-integration.md) for enabling Flash Attention in BERT, GPT, Llama models.
**Performance benchmarks**: See [references/benchmarks.md](references/benchmarks.md) for detailed speed and memory comparisons across GPUs and sequence lengths.
**Algorithm details**: See [references/algorithm.md](references/algorithm.md) for tiling strategy, recomputation, and IO complexity analysis.
**Advanced features**: See [references/advanced-features.md](references/advanced-features.md) for rotary embeddings, ALiBi, paged KV cache, and custom attention masks.
## Hardware requirements
- **GPU**: NVIDIA Ampere+ (A100, A10, A30) or AMD MI200+
- **VRAM**: Same as standard attention (Flash Attention doesn't increase memory)
- **CUDA**: 12.0+ (11.8 minimum)
- **PyTorch**: 2.2+ for native support
**Not supported**: V100 (Volta), CPU inference
## Resources
- Paper: "FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness" (NeurIPS 2022)
- Paper: "FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning" (ICLR 2024)
- Blog: https://tridao.me/blog/2024/flash3/
- GitHub: https://github.com/Dao-AILab/flash-attention
- PyTorch docs: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
This skill optimizes transformer attention using Flash Attention to deliver 2–4x speedups and 10–20x memory reduction for long-sequence workloads. It provides guidance and code patterns for using PyTorch native SDPA, the flash-attn library, H100 FP8 kernels, and sliding-window attention. Use it to resolve GPU memory issues, accelerate training or inference, and enable very long contexts without major code rewrites.
The skill shows how to switch standard scaled-dot-product attention to Flash Attention implementations that use IO-aware tiling and recomputation. It covers PyTorch 2.2+ native F.scaled_dot_product_attention and the flash-attn library API, including transposes, causal masking, window sizes, and MQA support. It also explains H100 FP8 usage and benchmarking techniques to measure speed and memory gains.
Will Flash Attention change model outputs?
Outputs should closely match standard attention when using float16/bfloat16; expect max differences <1e-3 in float16 for typical cases.
When will I not see speedup?
Flash Attention shows minimal benefit for short sequences (<512 tokens). Benefits grow with sequence length (512–2K: 2–3x, >2K: 3–4x).
How do I fix import or build errors for flash-attn?
Install with pip using --no-build-isolation and ensure CUDA toolkit and matching drivers are present. Verify GPU compute capability and PyTorch compatibility.
Does Flash Attention work on all GPUs?
It requires modern GPUs (Ampere or newer). H100 enables FP8 kernels. Volta V100 lacks full support; CPU inference is not supported.