home / skills / copyleftdev / sk1llz / kennedy
This skill helps you write high-performance Go code with mechanical sympathy and data-oriented design, improving execution understanding and readability.
npx playbooks add skill copyleftdev/sk1llz --skill kennedyReview the files below or copy the command above to add this skill to your agents.
---
name: kennedy-mechanical-sympathy
description: Write Go code in the style of Bill Kennedy, author of Go in Action. Emphasizes mechanical sympathy, data-oriented design, and understanding how Go code executes. Use when writing performance-critical Go or when teaching Go fundamentals.
---
# Bill Kennedy Style Guide
## Overview
Bill Kennedy is the author of "Go in Action" and founder of Ardan Labs. His teaching emphasizes **mechanical sympathy**: understanding how software interacts with hardware. His "Ultimate Go" course is legendary for deep-dive explanations.
## Core Philosophy
> "Integrity, readability, and simplicity—in that order."
> "If you don't understand the data, you don't understand the problem."
> "Mechanical sympathy: understanding how the hardware and runtime work."
Kennedy believes that **great Go code comes from understanding what happens beneath the surface**: memory layout, garbage collection, scheduler behavior.
## Design Principles
1. **Data-Oriented Design**: Design around data transformations, not object hierarchies.
2. **Mechanical Sympathy**: Write code that works with the hardware, not against it.
3. **Value Semantics First**: Prefer values over pointers unless you have a reason.
4. **Integrity First**: Correctness beats performance, readability beats cleverness.
## When Writing Code
### Always
- Understand the memory layout of your data structures
- Know when copies happen and when references are used
- Consider CPU cache behavior for hot paths
- Profile before optimizing
- Use value semantics by default
- Understand escape analysis
### Never
- Optimize without profiling
- Use pointers just to "avoid copies" without measuring
- Create deep pointer chains (bad for cache)
- Ignore alignment and padding
- Assume you know what escapes to heap
### Prefer
- Contiguous data (slices) over pointer-heavy structures
- Value receivers for small, immutable types
- Stack allocation over heap when possible
- Struct of arrays over array of structs for hot loops
- Understanding over blind rules
## Code Patterns
### Data-Oriented Design
```go
// BAD: Object-oriented thinking, pointer-heavy
type Node struct {
Value int
Children []*Node // Pointers scattered in memory
}
// GOOD: Data-oriented, cache-friendly
type Tree struct {
Values []int // Contiguous memory
Children [][]int // Indices into Values
}
// For hot loops, struct of arrays beats array of structs
// BAD: Array of structs (AoS)
type Particle struct {
X, Y, Z float64
VX, VY, VZ float64
Mass float64
}
particles := make([]Particle, 1000)
// GOOD: Struct of arrays (SoA) - better cache utilization
type Particles struct {
X, Y, Z []float64
VX, VY, VZ []float64
Mass []float64
}
p := Particles{
X: make([]float64, 1000),
Y: make([]float64, 1000),
// ...
}
// When updating just positions:
for i := range p.X {
p.X[i] += p.VX[i] // Sequential memory access
p.Y[i] += p.VY[i]
p.Z[i] += p.VZ[i]
}
```
### Value vs Pointer Semantics
```go
// Value semantics: type is small, immutable logically
type Time struct {
sec int64
nsec int32
}
func (t Time) Add(d Duration) Time {
return Time{sec: t.sec + int64(d), nsec: t.nsec}
}
// Pointer semantics: type represents a resource or is large
type File struct {
fd int
name string
// ...
}
func (f *File) Read(b []byte) (int, error) {
// Modifies state, represents resource
}
// RULE: Pick one semantic and be consistent for a type
// If any method needs pointer, use pointer for all methods
```
### Understanding Escape Analysis
```go
// Stack allocation: fast, automatic cleanup
func sumLocal() int {
numbers := [4]int{1, 2, 3, 4} // Array on stack
sum := 0
for _, n := range numbers {
sum += n
}
return sum // numbers never escapes
}
// Heap allocation: slower, needs GC
func sumHeap() *int {
sum := 0
for i := 0; i < 4; i++ {
sum += i
}
return &sum // sum escapes to heap!
}
// Check with: go build -gcflags="-m"
// ./main.go:10:2: moved to heap: sum
// Slices and interfaces often cause escapes
func process(data []byte) {
// If data is used after function returns
// or passed to interface{}, it may escape
}
```
### Memory Layout Awareness
```go
// Struct padding wastes memory
// BAD: Poor layout (24 bytes with padding)
type BadLayout struct {
a bool // 1 byte + 7 padding
b int64 // 8 bytes
c bool // 1 byte + 7 padding
}
// GOOD: Optimized layout (16 bytes)
type GoodLayout struct {
b int64 // 8 bytes
a bool // 1 byte
c bool // 1 byte + 6 padding
}
// Check with: unsafe.Sizeof()
// Or use: go vet -fieldalignment
```
### Slice Internals
```go
// Slice header: (pointer, length, capacity)
// Understanding this prevents bugs
func modify(s []int) {
s[0] = 999 // Modifies original!
s = append(s, 4) // May or may not affect original
}
func main() {
original := []int{1, 2, 3}
modify(original)
// original[0] is 999
// but append may have created new backing array
}
// Safe pattern: return the slice
func appendSafe(s []int, v int) []int {
return append(s, v)
}
original = appendSafe(original, 4)
```
### Benchmarking Properly
```go
func BenchmarkProcess(b *testing.B) {
// Setup outside the loop
data := generateTestData()
b.ResetTimer() // Don't count setup time
for i := 0; i < b.N; i++ {
result := Process(data)
// Prevent compiler from optimizing away
_ = result
}
}
// Compare implementations
func BenchmarkProcessV1(b *testing.B) { ... }
func BenchmarkProcessV2(b *testing.B) { ... }
// Run with: go test -bench=. -benchmem
// BenchmarkProcessV1-8 1000000 1234 ns/op 256 B/op 3 allocs/op
// BenchmarkProcessV2-8 2000000 567 ns/op 0 B/op 0 allocs/op
```
### Goroutine Pool Pattern
```go
type Pool struct {
work chan func()
sem chan struct{}
}
func NewPool(size int) *Pool {
p := &Pool{
work: make(chan func()),
sem: make(chan struct{}, size),
}
return p
}
func (p *Pool) Submit(task func()) {
select {
case p.work <- task:
// Worker picked it up
case p.sem <- struct{}{}:
// Start new worker
go p.worker(task)
}
}
func (p *Pool) worker(task func()) {
defer func() { <-p.sem }()
for {
task()
task = <-p.work
}
}
```
## Mental Model
Kennedy teaches by asking:
1. **What's the data?** Understand it before writing code.
2. **Where does it live?** Stack? Heap? How is it laid out?
3. **How does it flow?** What transformations happen?
4. **What's the cost?** Allocations, copies, cache misses?
## Kennedy's Priorities
1. **Integrity**: Code must be correct
2. **Readability**: Code must be maintainable
3. **Simplicity**: Don't over-engineer
4. **Performance**: After the above are satisfied
*In that order.*
This skill writes Go code in the style of Bill Kennedy, emphasizing mechanical sympathy, data-oriented design, and deep runtime understanding. It produces idiomatic, performance-aware Go suitable for performance-critical systems and for teaching core Go fundamentals. The goal is correctness and readability first, then measurable performance improvements.
The skill inspects code and design choices to favor value semantics, contiguous memory layouts, and cache-friendly patterns. It applies concrete recommendations: prefer slices and struct-of-arrays for hot paths, avoid unnecessary pointers, optimize struct field order, and guide escape analysis. It also generates benchmarks and profiling suggestions so optimizations are driven by measurement.
Does this skill force you to use pointers or values?
No. It recommends value semantics by default and instructs when pointer semantics are appropriate, with a rule to be consistent for a given type.
Will it optimize code without measurements?
No. The skill emphasizes profiling first and produces benchmarks and profiling commands to validate any optimization.