home / skills / chrislemke / stoffy / reasoningbank-agentdb

reasoningbank-agentdb skill

/.claude/skills/reasoningbank-agentdb

This skill enables adaptive learning for self-learning agents using ReasoningBank and AgentDB, improving decision-making via memory distillation and trajectory

npx playbooks add skill chrislemke/stoffy --skill reasoningbank-agentdb

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.7 KB
---
name: "ReasoningBank with AgentDB"
description: "Implement ReasoningBank adaptive learning with AgentDB's 150x faster vector database. Includes trajectory tracking, verdict judgment, memory distillation, and pattern recognition. Use when building self-learning agents, optimizing decision-making, or implementing experience replay systems."
---

# ReasoningBank with AgentDB

## What This Skill Does

Provides ReasoningBank adaptive learning patterns using AgentDB's high-performance backend (150x-12,500x faster). Enables agents to learn from experiences, judge outcomes, distill memories, and improve decision-making over time with 100% backward compatibility.

**Performance**: 150x faster pattern retrieval, 500x faster batch operations, <1ms memory access.

## Prerequisites

- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of reinforcement learning concepts (optional)

---

## Quick Start with CLI

### Initialize ReasoningBank Database

```bash
# Initialize AgentDB for ReasoningBank
npx agentdb@latest init ./.agentdb/reasoningbank.db --dimension 1536

# Start MCP server for Claude Code integration
npx agentdb@latest mcp
claude mcp add agentdb npx agentdb@latest mcp
```

### Migrate from Legacy ReasoningBank

```bash
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db

# Verify migration
npx agentdb@latest stats ./.agentdb/reasoningbank.db
```

---

## Quick Start with API

```typescript
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';

// Initialize ReasoningBank with AgentDB
const rb = await createAgentDBAdapter({
  dbPath: '.agentdb/reasoningbank.db',
  enableLearning: true,      // Enable learning plugins
  enableReasoning: true,      // Enable reasoning agents
  cacheSize: 1000,            // 1000 pattern cache
});

// Store successful experience
const query = "How to optimize database queries?";
const embedding = await computeEmbedding(query);

await rb.insertPattern({
  id: '',
  type: 'experience',
  domain: 'database-optimization',
  pattern_data: JSON.stringify({
    embedding,
    pattern: {
      query,
      approach: 'indexing + query optimization',
      outcome: 'success',
      metrics: { latency_reduction: 0.85 }
    }
  }),
  confidence: 0.95,
  usage_count: 1,
  success_count: 1,
  created_at: Date.now(),
  last_used: Date.now(),
});

// Retrieve similar experiences with reasoning
const result = await rb.retrieveWithReasoning(embedding, {
  domain: 'database-optimization',
  k: 5,
  useMMR: true,              // Diverse results
  synthesizeContext: true,    // Rich context synthesis
});

console.log('Memories:', result.memories);
console.log('Context:', result.context);
console.log('Patterns:', result.patterns);
```

---

## Core ReasoningBank Concepts

### 1. Trajectory Tracking

Track agent execution paths and outcomes:

```typescript
// Record trajectory (sequence of actions)
const trajectory = {
  task: 'optimize-api-endpoint',
  steps: [
    { action: 'analyze-bottleneck', result: 'found N+1 query' },
    { action: 'add-eager-loading', result: 'reduced queries' },
    { action: 'add-caching', result: 'improved latency' }
  ],
  outcome: 'success',
  metrics: { latency_before: 2500, latency_after: 150 }
};

const embedding = await computeEmbedding(JSON.stringify(trajectory));

await rb.insertPattern({
  id: '',
  type: 'trajectory',
  domain: 'api-optimization',
  pattern_data: JSON.stringify({ embedding, pattern: trajectory }),
  confidence: 0.9,
  usage_count: 1,
  success_count: 1,
  created_at: Date.now(),
  last_used: Date.now(),
});
```

### 2. Verdict Judgment

Judge whether a trajectory was successful:

```typescript
// Retrieve similar past trajectories
const similar = await rb.retrieveWithReasoning(queryEmbedding, {
  domain: 'api-optimization',
  k: 10,
});

// Judge based on similarity to successful patterns
const verdict = similar.memories.filter(m =>
  m.pattern.outcome === 'success' &&
  m.similarity > 0.8
).length > 5 ? 'likely_success' : 'needs_review';

console.log('Verdict:', verdict);
console.log('Confidence:', similar.memories[0]?.similarity || 0);
```

### 3. Memory Distillation

Consolidate similar experiences into patterns:

```typescript
// Get all experiences in domain
const experiences = await rb.retrieveWithReasoning(embedding, {
  domain: 'api-optimization',
  k: 100,
  optimizeMemory: true,  // Automatic consolidation
});

// Distill into high-level pattern
const distilledPattern = {
  domain: 'api-optimization',
  pattern: 'For N+1 queries: add eager loading, then cache',
  success_rate: 0.92,
  sample_size: experiences.memories.length,
  confidence: 0.95
};

await rb.insertPattern({
  id: '',
  type: 'distilled-pattern',
  domain: 'api-optimization',
  pattern_data: JSON.stringify({
    embedding: await computeEmbedding(JSON.stringify(distilledPattern)),
    pattern: distilledPattern
  }),
  confidence: 0.95,
  usage_count: 0,
  success_count: 0,
  created_at: Date.now(),
  last_used: Date.now(),
});
```

---

## Integration with Reasoning Agents

AgentDB provides 4 reasoning modules that enhance ReasoningBank:

### 1. PatternMatcher

Find similar successful patterns:

```typescript
const result = await rb.retrieveWithReasoning(queryEmbedding, {
  domain: 'problem-solving',
  k: 10,
  useMMR: true,  // Maximal Marginal Relevance for diversity
});

// PatternMatcher returns diverse, relevant memories
result.memories.forEach(mem => {
  console.log(`Pattern: ${mem.pattern.approach}`);
  console.log(`Similarity: ${mem.similarity}`);
  console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
```

### 2. ContextSynthesizer

Generate rich context from multiple memories:

```typescript
const result = await rb.retrieveWithReasoning(queryEmbedding, {
  domain: 'code-optimization',
  synthesizeContext: true,  // Enable context synthesis
  k: 5,
});

// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 5 similar optimizations, the most effective approach
//  involves profiling, identifying bottlenecks, and applying targeted
//  improvements. Success rate: 87%"
```

### 3. MemoryOptimizer

Automatically consolidate and prune:

```typescript
const result = await rb.retrieveWithReasoning(queryEmbedding, {
  domain: 'testing',
  optimizeMemory: true,  // Enable automatic optimization
});

// MemoryOptimizer consolidates similar patterns and prunes low-quality
console.log('Optimizations:', result.optimizations);
// { consolidated: 15, pruned: 3, improved_quality: 0.12 }
```

### 4. ExperienceCurator

Filter by quality and relevance:

```typescript
const result = await rb.retrieveWithReasoning(queryEmbedding, {
  domain: 'debugging',
  k: 20,
  minConfidence: 0.8,  // Only high-confidence experiences
});

// ExperienceCurator returns only quality experiences
result.memories.forEach(mem => {
  console.log(`Confidence: ${mem.confidence}`);
  console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
```

---

## Legacy API Compatibility

AgentDB maintains 100% backward compatibility with legacy ReasoningBank:

```typescript
import {
  retrieveMemories,
  judgeTrajectory,
  distillMemories
} from 'agentic-flow/reasoningbank';

// Legacy API works unchanged (uses AgentDB backend automatically)
const memories = await retrieveMemories(query, {
  domain: 'code-generation',
  agent: 'coder'
});

const verdict = await judgeTrajectory(trajectory, query);

const newMemories = await distillMemories(
  trajectory,
  verdict,
  query,
  { domain: 'code-generation' }
);
```

---

## Performance Characteristics

- **Pattern Search**: 150x faster (100µs vs 15ms)
- **Memory Retrieval**: <1ms (with cache)
- **Batch Insert**: 500x faster (2ms vs 1s for 100 patterns)
- **Trajectory Judgment**: <5ms (including retrieval + analysis)
- **Memory Distillation**: <50ms (consolidate 100 patterns)

---

## Advanced Patterns

### Hierarchical Memory

Organize memories by abstraction level:

```typescript
// Low-level: Specific implementation
await rb.insertPattern({
  type: 'concrete',
  domain: 'debugging/null-pointer',
  pattern_data: JSON.stringify({
    embedding,
    pattern: { bug: 'NPE in UserService.getUser()', fix: 'Add null check' }
  }),
  confidence: 0.9,
  // ...
});

// Mid-level: Pattern across similar cases
await rb.insertPattern({
  type: 'pattern',
  domain: 'debugging',
  pattern_data: JSON.stringify({
    embedding,
    pattern: { category: 'null-pointer', approach: 'defensive-checks' }
  }),
  confidence: 0.85,
  // ...
});

// High-level: General principle
await rb.insertPattern({
  type: 'principle',
  domain: 'software-engineering',
  pattern_data: JSON.stringify({
    embedding,
    pattern: { principle: 'fail-fast with clear errors' }
  }),
  confidence: 0.95,
  // ...
});
```

### Multi-Domain Learning

Transfer learning across domains:

```typescript
// Learn from backend optimization
const backendExperience = await rb.retrieveWithReasoning(embedding, {
  domain: 'backend-optimization',
  k: 10,
});

// Apply to frontend optimization
const transferredKnowledge = backendExperience.memories.map(mem => ({
  ...mem,
  domain: 'frontend-optimization',
  adapted: true,
}));
```

---

## CLI Operations

### Database Management

```bash
# Export trajectories and patterns
npx agentdb@latest export ./.agentdb/reasoningbank.db ./backup.json

# Import experiences
npx agentdb@latest import ./experiences.json

# Get statistics
npx agentdb@latest stats ./.agentdb/reasoningbank.db
# Shows: total patterns, domains, confidence distribution
```

### Migration

```bash
# Migrate from legacy ReasoningBank
npx agentdb@latest migrate --source .swarm/memory.db --target .agentdb/reasoningbank.db

# Validate migration
npx agentdb@latest stats .agentdb/reasoningbank.db
```

---

## Troubleshooting

### Issue: Migration fails
```bash
# Check source database exists
ls -la .swarm/memory.db

# Run with verbose logging
DEBUG=agentdb:* npx agentdb@latest migrate --source .swarm/memory.db
```

### Issue: Low confidence scores
```typescript
// Enable context synthesis for better quality
const result = await rb.retrieveWithReasoning(embedding, {
  synthesizeContext: true,
  useMMR: true,
  k: 10,
});
```

### Issue: Memory growing too large
```typescript
// Enable automatic optimization
const result = await rb.retrieveWithReasoning(embedding, {
  optimizeMemory: true,  // Consolidates similar patterns
});

// Or manually optimize
await rb.optimize();
```

---

## Learn More

- **AgentDB Integration**: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- **GitHub**: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- **MCP Integration**: `npx agentdb@latest mcp`
- **Website**: https://agentdb.ruv.io

---

**Category**: Machine Learning / Reinforcement Learning
**Difficulty**: Intermediate
**Estimated Time**: 20-30 minutes

Overview

This skill implements ReasoningBank adaptive learning on top of AgentDB's high-performance vector database. It combines trajectory tracking, verdict judgment, memory distillation, and pattern recognition so agents can learn from past experiences and improve decisions over time. The integration preserves legacy ReasoningBank APIs while delivering sub-millisecond retrieval and large-speedup batch operations.

How this skill works

The adapter stores experience and trajectory embeddings in AgentDB, enabling rapid similarity search and reasoning. Retrieval APIs return ranked memories and synthesized context, and optional reasoning modules (PatternMatcher, ContextSynthesizer, MemoryOptimizer, ExperienceCurator) produce verdicts, distilled patterns, or consolidated memories. Memory operations support automatic optimization, pruning, and hierarchical abstraction for transfer learning across domains.

When to use it

  • Building self-learning agents that must replay and learn from past executions.
  • Implementing experience replay or reinforcement-learning pipelines with fast memory access.
  • Automating verdicts on action sequences or judging trajectory success.
  • Consolidating repeated experiences into high-level patterns for faster planning.
  • Scaling memory storage and retrieval where sub-millisecond latency matters.

Best practices

  • Embed trajectories, experiences, and distilled patterns consistently (same dimension) to ensure reliable similarity.
  • Enable context synthesis (ContextSynthesizer) when you need richer, coherent explanations rather than raw matches.
  • Use MemoryOptimizer periodically or on insert with optimizeMemory to prune low-quality records and consolidate duplicates.
  • Set domain and confidence filters to reduce noise and focus retrieval on relevant, high-quality memories.
  • Keep a moderate cacheSize for hot patterns and rely on AgentDB for large-scale cold storage.

Example use cases

  • Record API optimization steps as trajectories, then judge new optimization plans against successful past runs.
  • Distill repeated debugging fixes into mid-level patterns to accelerate future triage and fixes.
  • Use experience replay in RL agents with fast batch inserts and retrieval for training iterations.
  • Automatically prune and consolidate telemetry-driven operational incidents into actionable principles.
  • Transfer backend optimization patterns into frontend contexts by adapting distilled memos across domains.

FAQ

Is this compatible with existing ReasoningBank code?

Yes. The integration maintains backward compatibility so legacy ReasoningBank calls work while benefitting from AgentDB performance.

How do I reduce memory growth?

Enable optimizeMemory on retrievals or run the MemoryOptimizer periodically to consolidate similar patterns and prune low-confidence entries.