home / skills / bradautomates / head-of-content / tiktok-research

tiktok-research skill

/.claude/skills/tiktok-research

This skill analyzes trending TikTok content, identifies outliers, and generates actionable hook formulas and reports to inform content strategy.

npx playbooks add skill bradautomates/head-of-content --skill tiktok-research

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
5.5 KB
---
name: tiktok-research
description: |
  Research high-performing TikTok videos from tracked accounts using Apify's TikTok Scraper.
  Identifies outlier content, analyzes top 5 videos with AI, and generates reports with actionable hook formulas.

  Use when asked to:
  - Find trending TikTok content in a niche
  - Research what's performing on TikTok
  - Identify high-performing video patterns
  - Analyze competitors' TikTok content
  - Generate content ideas from TikTok trends
  - Run TikTok research
  - Find viral TikToks
  - Analyze hooks and content structure

  Triggers: "tiktok research", "tt research", "find trending tiktoks", "analyze tiktok accounts",
  "what's working on tiktok", "content research tiktok", "tiktok analysis", "tiktok trends"
---

# TikTok Research

Research high-performing TikTok videos, identify outliers, and analyze top video content for hooks and structure.

## Prerequisites

- `APIFY_TOKEN` environment variable or in `.env`
- `GEMINI_API_KEY` environment variable or in `.env`
- `apify-client` and `google-genai` Python packages
- Accounts configured in `.claude/context/tiktok-accounts.md`

Verify setup:
```bash
python3 -c "
import os
try:
    from dotenv import load_dotenv
    load_dotenv()
except ImportError:
    pass
from apify_client import ApifyClient
from google import genai
assert os.environ.get('APIFY_TOKEN'), 'APIFY_TOKEN not set'
assert os.environ.get('GEMINI_API_KEY'), 'GEMINI_API_KEY not set'
" && echo "Prerequisites OK"
```

## Workflow

### 1. Create Run Folder

```bash
RUN_FOLDER="tiktok-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && echo "$RUN_FOLDER"
```

### 2. Fetch Content

```bash
python3 .claude/skills/tiktok-research/scripts/fetch_tiktok.py \
  --days 30 \
  --limit 50 \
  --sorting latest \
  --output {RUN_FOLDER}/raw.json
```

Parameters:
- `--days`: Days back to search (default: 30)
- `--limit`: Max videos per account (default: 50)
- `--sorting`: "latest", "popular", or "oldest" (default: latest)
- `--usernames`: Override accounts file with specific usernames

### 3. Identify Outliers

```bash
python3 .claude/skills/tiktok-research/scripts/analyze_posts.py \
  --input {RUN_FOLDER}/raw.json \
  --output {RUN_FOLDER}/outliers.json \
  --threshold 2.0
```

Output JSON contains:
- `total_videos`: Number of videos analyzed
- `outlier_count`: Number of outliers found
- `topics`: Top hashtags, sounds, and keywords
- `accounts`: List of accounts analyzed
- `outliers`: Array of outlier videos with engagement metrics

### 4. Analyze Top Videos with AI

```bash
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py \
  --input {RUN_FOLDER}/outliers.json \
  --output {RUN_FOLDER}/video-analysis.json \
  --platform tiktok \
  --max-videos 5
```

Extracts from each video:
- Hook technique and replicable formula
- Content structure and sections
- Retention techniques
- CTA strategy

See the `video-content-analyzer` skill for full output schema and hook/format types.

### 5. Generate Report

Read `{RUN_FOLDER}/outliers.json` and `{RUN_FOLDER}/video-analysis.json`, then generate `{RUN_FOLDER}/report.md`.

**Report Structure:**

```markdown
# TikTok Research Report

Generated: {date}

## Top Performing Hooks

Ranked by engagement. Use these formulas for your content.

### Hook 1: {technique} - @{username}
- **Opening**: "{opening_line}"
- **Why it works**: {attention_grab}
- **Replicable Formula**: {replicable_formula}
- **Engagement**: {diggCount} likes, {commentCount} comments, {playCount} views
- [Watch Video]({webVideoUrl})

[Repeat for each analyzed video]

## Content Structure Patterns

| Video | Format | Pacing | Key Retention Techniques |
|-------|--------|--------|--------------------------|
| @username | {format} | {pacing} | {techniques} |

## CTA Strategies

| Video | CTA Type | CTA Text | Placement |
|-------|----------|----------|-----------|
| @username | {type} | "{cta_text}" | {placement} |

## All Outliers

| Rank | Username | Likes | Comments | Shares | Views | Engagement Rate |
|------|----------|-------|----------|--------|-------|-----------------|
[List all outliers with metrics and links]

## Trending Topics

### Top Hashtags
[From outliers.json topics.hashtags]

### Top Sounds
[From outliers.json topics.sounds]

### Top Keywords
[From outliers.json topics.keywords]

## Actionable Takeaways

[Synthesize patterns into 4-6 specific recommendations]

## Accounts Analyzed
[List accounts]
```

Focus on actionable insights. The "Top Performing Hooks" section with replicable formulas should be prominent.

## Quick Reference

Full pipeline:
```bash
RUN_FOLDER="tiktok-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && \
python3 .claude/skills/tiktok-research/scripts/fetch_tiktok.py -o "$RUN_FOLDER/raw.json" && \
python3 .claude/skills/tiktok-research/scripts/analyze_posts.py -i "$RUN_FOLDER/raw.json" -o "$RUN_FOLDER/outliers.json" && \
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py -i "$RUN_FOLDER/outliers.json" -o "$RUN_FOLDER/video-analysis.json" -p tiktok
```

Then read both JSON files and generate the report.

## Engagement Metrics

**Engagement Score**: `likes + (3 x comments) + (2 x shares) + (2 x saves) + (0.05 x views)`

**Outlier Detection**: Videos with engagement rate > mean + (threshold x std_dev)

**Engagement Rate**: (score / followers) x 100

## TikTok-Specific Fields

- `diggCount`: Likes/hearts
- `shareCount`: Shares
- `playCount`: Video views
- `commentCount`: Comments
- `collectCount`: Saves/bookmarks
- `authorFollowers`: Creator's follower count
- `musicName`: Sound used in video
- `musicOriginal`: Whether sound is original

Overview

This skill researches high-performing TikTok videos from tracked accounts using Apify's TikTok scraper, identifies outlier content, and produces AI-driven analysis of top videos. It highlights replicable hook formulas, content structure patterns, and generates a structured report with actionable recommendations.

How this skill works

The pipeline fetches recent videos from configured accounts, calculates engagement scores and flags outliers, then sends the top outliers to an AI analyzer to extract hook technique, pacing, retention tactics, and CTA strategy. Finally it compiles an exportable report with ranked hooks, topic trends, and specific, repeatable formulas you can use for content creation.

When to use it

  • When you need to find trending TikTok content in a niche
  • To analyze competitors’ TikTok accounts and discover what’s working
  • When you want data-driven hook formulas to replicate top-performing videos
  • To generate content ideas based on current TikTok trends and sounds
  • When preparing a content plan or testing new formats on TikTok

Best practices

  • Track a focused set of accounts (10–50) for reliable signal and trend convergence
  • Use 14–30 days of history to balance recency and trend stability
  • Set an engagement outlier threshold (e.g., 2.0 std dev) and inspect at least top 5 outliers manually
  • Combine hook formulas with identified pacing and retention techniques, not just copy lines
  • Export report data and reuse the hook formulas as templates for A/B testing

Example use cases

  • Marketing team wants 5 replicable hooks to test for the next content batch
  • Creator analyzing competitor spikes to adapt trending sounds and CTAs
  • Agency producing a one-page TikTok research brief for a client campaign
  • Content strategist extracting top hashtags, sounds, and keywords to seed new concepts
  • Growth lead identifying format and pacing patterns that boost retention

FAQ

What inputs are required to run the pipeline?

You need an Apify token, an AI API key (Gemini), and a configured list of target usernames; the scripts accept days, limit, and sorting parameters.

How does the skill detect outliers?

It computes an engagement score per video and flags videos with engagement rate greater than mean plus threshold times standard deviation.

What does the AI analysis output include?

For each top video it extracts a hook technique and a replicable formula, content structure, retention techniques, and the CTA strategy.