home / skills / bradautomates / head-of-content / instagram-research
This skill helps you uncover trending Instagram content and extract actionable hooks and patterns to inform content strategy.
npx playbooks add skill bradautomates/head-of-content --skill instagram-researchReview the files below or copy the command above to add this skill to your agents.
---
name: instagram-research
description: |
Research high-performing Instagram content (posts and reels) from tracked accounts using Apify's Instagram Scraper.
Identifies outlier content, analyzes top 5 videos with AI, and generates reports with actionable hook formulas.
Use when asked to:
- Find trending Instagram content in a niche
- Research what's performing on Instagram
- Identify high-performing reel patterns
- Analyze competitors' Instagram content
- Generate content ideas from Instagram trends
- Run Instagram research
- Find viral reels
- Analyze hooks and content structure
Triggers: "instagram research", "ig research", "find trending reels", "analyze instagram accounts",
"what's working on instagram", "content research instagram", "reel analysis", "instagram trends"
---
# Instagram Research
Research high-performing Instagram posts and reels, identify outliers, and analyze top video content for hooks and structure.
## Prerequisites
- `APIFY_TOKEN` environment variable or in `.env`
- `GEMINI_API_KEY` environment variable or in `.env`
- `apify-client` and `google-genai` Python packages
- Accounts configured in `.claude/context/instagram-accounts.md`
Verify setup:
```bash
python3 -c "
import os
try:
from dotenv import load_dotenv
load_dotenv()
except ImportError:
pass
from apify_client import ApifyClient
from google import genai
assert os.environ.get('APIFY_TOKEN'), 'APIFY_TOKEN not set'
assert os.environ.get('GEMINI_API_KEY'), 'GEMINI_API_KEY not set'
" && echo "Prerequisites OK"
```
## Workflow
### 1. Create Run Folder
```bash
RUN_FOLDER="instagram-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && echo "$RUN_FOLDER"
```
### 2. Fetch Content
```bash
python3 .claude/skills/instagram-research/scripts/fetch_instagram.py \
--type reels \
--days 30 \
--limit 50 \
--output {RUN_FOLDER}/raw.json
```
Parameters:
- `--type`: "posts", "reels", or "stories"
- `--days`: Days back to search (default: 30)
- `--limit`: Max items per account (default: 50)
### 3. Identify Outliers
```bash
python3 .claude/skills/instagram-research/scripts/analyze_posts.py \
--input {RUN_FOLDER}/raw.json \
--output {RUN_FOLDER}/outliers.json \
--threshold 2.0
```
Output JSON contains:
- `total_posts`: Number of posts analyzed
- `outlier_count`: Number of outliers found
- `topics`: Top hashtags and keywords
- `accounts`: List of accounts analyzed
- `outliers`: Array of outlier posts with engagement metrics
### 4. Analyze Top Videos with AI
```bash
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py \
--input {RUN_FOLDER}/outliers.json \
--output {RUN_FOLDER}/video-analysis.json \
--platform instagram \
--max-videos 5
```
Extracts from each video:
- Hook technique and replicable formula
- Content structure and sections
- Retention techniques
- CTA strategy
See the `video-content-analyzer` skill for full output schema and hook/format types.
### 5. Generate Report
Read `{RUN_FOLDER}/outliers.json` and `{RUN_FOLDER}/video-analysis.json`, then generate `{RUN_FOLDER}/report.md`.
**Report Structure:**
```markdown
# Instagram Research Report
Generated: {date}
## Top Performing Hooks
Ranked by engagement. Use these formulas for your content.
### Hook 1: {technique} - @{username}
- **Opening**: "{opening_line}"
- **Why it works**: {attention_grab}
- **Replicable Formula**: {replicable_formula}
- **Engagement**: {likes} likes, {comments} comments, {views} views
- [Watch Video]({url})
[Repeat for each analyzed video]
## Content Structure Patterns
| Video | Format | Pacing | Key Retention Techniques |
|-------|--------|--------|--------------------------|
| @username | {format} | {pacing} | {techniques} |
## CTA Strategies
| Video | CTA Type | CTA Text | Placement |
|-------|----------|----------|-----------|
| @username | {type} | "{cta_text}" | {placement} |
## All Outliers
| Rank | Username | Likes | Comments | Views | Engagement Rate |
|------|----------|-------|----------|-------|-----------------|
[List all outliers with metrics and links]
## Trending Topics
### Top Hashtags
[From outliers.json topics.hashtags]
### Top Keywords
[From outliers.json topics.keywords]
## Actionable Takeaways
[Synthesize patterns into 4-6 specific recommendations]
## Accounts Analyzed
[List accounts]
```
Focus on actionable insights. The "Top Performing Hooks" section with replicable formulas should be prominent.
## Quick Reference
Full pipeline:
```bash
RUN_FOLDER="instagram-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && \
python3 .claude/skills/instagram-research/scripts/fetch_instagram.py --type reels -o "$RUN_FOLDER/raw.json" && \
python3 .claude/skills/instagram-research/scripts/analyze_posts.py -i "$RUN_FOLDER/raw.json" -o "$RUN_FOLDER/outliers.json" && \
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py -i "$RUN_FOLDER/outliers.json" -o "$RUN_FOLDER/video-analysis.json" -p instagram
```
Then read both JSON files and generate the report.
## Engagement Metrics
**Engagement Score**: `likes + (3 × comments) + (0.1 × views)`
**Outlier Detection**: Posts with engagement rate > mean + (threshold × std_dev)
**Engagement Rate**: (score / followers) × 100
This skill researches high-performing Instagram posts and reels from tracked accounts using Apify's Instagram scraper and AI analysis. It identifies outlier content, analyzes the top videos for hooks and structure, and produces a concise report with replicable hook formulas and actionable recommendations. The output focuses on what to replicate and why it works so you can create trend-aligned content quickly.
The skill fetches recent posts or reels from configured accounts, computes engagement scores, and flags outliers based on statistical thresholds. It then runs AI-driven analysis on the top videos to extract hook techniques, content structure, retention tactics, and CTA strategies. Finally, it compiles those findings into a structured report highlighting top hooks, format patterns, hashtags, and step-by-step formulas to replicate success.
What inputs does the skill require?
Environment API keys for the scraper and AI, and a list of Instagram accounts to track.
How are outliers defined?
Outliers are posts with engagement rate greater than mean plus (threshold × standard deviation); threshold is configurable.