home / skills / bradautomates / head-of-content / instagram-research

instagram-research skill

/.claude/skills/instagram-research

This skill helps you uncover trending Instagram content and extract actionable hooks and patterns to inform content strategy.

npx playbooks add skill bradautomates/head-of-content --skill instagram-research

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
5.2 KB
---
name: instagram-research
description: |
  Research high-performing Instagram content (posts and reels) from tracked accounts using Apify's Instagram Scraper.
  Identifies outlier content, analyzes top 5 videos with AI, and generates reports with actionable hook formulas.

  Use when asked to:
  - Find trending Instagram content in a niche
  - Research what's performing on Instagram
  - Identify high-performing reel patterns
  - Analyze competitors' Instagram content
  - Generate content ideas from Instagram trends
  - Run Instagram research
  - Find viral reels
  - Analyze hooks and content structure

  Triggers: "instagram research", "ig research", "find trending reels", "analyze instagram accounts",
  "what's working on instagram", "content research instagram", "reel analysis", "instagram trends"
---

# Instagram Research

Research high-performing Instagram posts and reels, identify outliers, and analyze top video content for hooks and structure.

## Prerequisites

- `APIFY_TOKEN` environment variable or in `.env`
- `GEMINI_API_KEY` environment variable or in `.env`
- `apify-client` and `google-genai` Python packages
- Accounts configured in `.claude/context/instagram-accounts.md`

Verify setup:
```bash
python3 -c "
import os
try:
    from dotenv import load_dotenv
    load_dotenv()
except ImportError:
    pass
from apify_client import ApifyClient
from google import genai
assert os.environ.get('APIFY_TOKEN'), 'APIFY_TOKEN not set'
assert os.environ.get('GEMINI_API_KEY'), 'GEMINI_API_KEY not set'
" && echo "Prerequisites OK"
```

## Workflow

### 1. Create Run Folder

```bash
RUN_FOLDER="instagram-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && echo "$RUN_FOLDER"
```

### 2. Fetch Content

```bash
python3 .claude/skills/instagram-research/scripts/fetch_instagram.py \
  --type reels \
  --days 30 \
  --limit 50 \
  --output {RUN_FOLDER}/raw.json
```

Parameters:
- `--type`: "posts", "reels", or "stories"
- `--days`: Days back to search (default: 30)
- `--limit`: Max items per account (default: 50)

### 3. Identify Outliers

```bash
python3 .claude/skills/instagram-research/scripts/analyze_posts.py \
  --input {RUN_FOLDER}/raw.json \
  --output {RUN_FOLDER}/outliers.json \
  --threshold 2.0
```

Output JSON contains:
- `total_posts`: Number of posts analyzed
- `outlier_count`: Number of outliers found
- `topics`: Top hashtags and keywords
- `accounts`: List of accounts analyzed
- `outliers`: Array of outlier posts with engagement metrics

### 4. Analyze Top Videos with AI

```bash
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py \
  --input {RUN_FOLDER}/outliers.json \
  --output {RUN_FOLDER}/video-analysis.json \
  --platform instagram \
  --max-videos 5
```

Extracts from each video:
- Hook technique and replicable formula
- Content structure and sections
- Retention techniques
- CTA strategy

See the `video-content-analyzer` skill for full output schema and hook/format types.

### 5. Generate Report

Read `{RUN_FOLDER}/outliers.json` and `{RUN_FOLDER}/video-analysis.json`, then generate `{RUN_FOLDER}/report.md`.

**Report Structure:**

```markdown
# Instagram Research Report

Generated: {date}

## Top Performing Hooks

Ranked by engagement. Use these formulas for your content.

### Hook 1: {technique} - @{username}
- **Opening**: "{opening_line}"
- **Why it works**: {attention_grab}
- **Replicable Formula**: {replicable_formula}
- **Engagement**: {likes} likes, {comments} comments, {views} views
- [Watch Video]({url})

[Repeat for each analyzed video]

## Content Structure Patterns

| Video | Format | Pacing | Key Retention Techniques |
|-------|--------|--------|--------------------------|
| @username | {format} | {pacing} | {techniques} |

## CTA Strategies

| Video | CTA Type | CTA Text | Placement |
|-------|----------|----------|-----------|
| @username | {type} | "{cta_text}" | {placement} |

## All Outliers

| Rank | Username | Likes | Comments | Views | Engagement Rate |
|------|----------|-------|----------|-------|-----------------|
[List all outliers with metrics and links]

## Trending Topics

### Top Hashtags
[From outliers.json topics.hashtags]

### Top Keywords
[From outliers.json topics.keywords]

## Actionable Takeaways

[Synthesize patterns into 4-6 specific recommendations]

## Accounts Analyzed
[List accounts]
```

Focus on actionable insights. The "Top Performing Hooks" section with replicable formulas should be prominent.

## Quick Reference

Full pipeline:
```bash
RUN_FOLDER="instagram-research/$(date +%Y-%m-%d_%H%M%S)" && mkdir -p "$RUN_FOLDER" && \
python3 .claude/skills/instagram-research/scripts/fetch_instagram.py --type reels -o "$RUN_FOLDER/raw.json" && \
python3 .claude/skills/instagram-research/scripts/analyze_posts.py -i "$RUN_FOLDER/raw.json" -o "$RUN_FOLDER/outliers.json" && \
python3 .claude/skills/video-content-analyzer/scripts/analyze_videos.py -i "$RUN_FOLDER/outliers.json" -o "$RUN_FOLDER/video-analysis.json" -p instagram
```

Then read both JSON files and generate the report.

## Engagement Metrics

**Engagement Score**: `likes + (3 × comments) + (0.1 × views)`

**Outlier Detection**: Posts with engagement rate > mean + (threshold × std_dev)

**Engagement Rate**: (score / followers) × 100

Overview

This skill researches high-performing Instagram posts and reels from tracked accounts using Apify's Instagram scraper and AI analysis. It identifies outlier content, analyzes the top videos for hooks and structure, and produces a concise report with replicable hook formulas and actionable recommendations. The output focuses on what to replicate and why it works so you can create trend-aligned content quickly.

How this skill works

The skill fetches recent posts or reels from configured accounts, computes engagement scores, and flags outliers based on statistical thresholds. It then runs AI-driven analysis on the top videos to extract hook techniques, content structure, retention tactics, and CTA strategies. Finally, it compiles those findings into a structured report highlighting top hooks, format patterns, hashtags, and step-by-step formulas to replicate success.

When to use it

  • Find trending Instagram content in a specific niche
  • Research competitors’ high-performing reels and posts
  • Identify repeatable hook and pacing patterns for reels
  • Generate content ideas grounded in current Instagram trends
  • Run periodic audits to monitor what’s gaining traction

Best practices

  • Track a focused set of competitor or niche accounts to keep results relevant
  • Fetch data over a consistent window (e.g., 30 days) for comparable metrics
  • Use the engagement score and outlier threshold to prioritize truly exceptional posts
  • Limit AI video analysis to the top 3–5 clips to get high-quality, actionable formulas
  • Translate hook formulas into brief prompts for creators to test quickly

Example use cases

  • Run a 30-day scan of niche competitors to collect top-performing reels and hooks
  • Analyze top 5 outlier videos to extract repeatable opening lines and CTA placement
  • Create a content brief with 4–6 hook formulas and pacing notes for a video shoot
  • Monitor hashtag and keyword trends across outliers to inform caption strategy

FAQ

What inputs does the skill require?

Environment API keys for the scraper and AI, and a list of Instagram accounts to track.

How are outliers defined?

Outliers are posts with engagement rate greater than mean plus (threshold × standard deviation); threshold is configurable.