home / skills / bobmatnyc / claude-mpm-skills / langchain
This skill helps you build and deploy LLM-powered apps using LangChain components, RAG, and memory with practical code examples.
npx playbooks add skill bobmatnyc/claude-mpm-skills --skill langchainReview the files below or copy the command above to add this skill to your agents.
---
name: langchain-framework
description: "LangChain LLM application framework with chains, agents, RAG, and memory for building AI-powered applications"
progressive_disclosure:
entry_point:
summary: "LangChain LLM application framework with chains, agents, RAG, and memory for building AI-powered applications"
when_to_use: "When working with langchain-framework or related functionality."
quick_start: "1. Review the core concepts below. 2. Apply patterns to your use case. 3. Follow best practices for implementation."
---
# LangChain Framework
---
progressive_disclosure:
entry_point:
summary: "LLM application framework with chains, agents, RAG, and memory"
when_to_use:
- "When building LLM-powered applications"
- "When implementing RAG (Retrieval Augmented Generation)"
- "When creating AI agents with tools"
- "When chaining multiple LLM calls"
quick_start:
- "pip install langchain langchain-anthropic"
- "Set up LLM (ChatAnthropic or ChatOpenAI)"
- "Create chain with prompts and LLM"
- "Invoke chain with input"
token_estimate:
entry: 85
full: 5200
---
## Core Concepts
### LangChain Expression Language (LCEL)
Modern composable syntax for building chains with `|` operator.
**Basic Chain**:
```python
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
# Components
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
output_parser = StrOutputParser()
# Compose with LCEL
chain = prompt | llm | output_parser
# Invoke
result = chain.invoke({"topic": "programming"})
```
**Why LCEL**:
- Type safety and auto-completion
- Streaming support built-in
- Async by default
- Observability with LangSmith
- Easier debugging
### Chain Components
**Prompts**:
```python
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# Simple template
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
("user", "{input}")
])
# With message history
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
MessagesPlaceholder(variable_name="history"),
("user", "{input}")
])
# Few-shot examples
from langchain_core.prompts import FewShotChatMessagePromptTemplate
examples = [
{"input": "2+2", "output": "4"},
{"input": "3*5", "output": "15"}
]
example_prompt = ChatPromptTemplate.from_messages([
("human", "{input}"),
("ai", "{output}")
])
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples
)
```
**LLMs**:
```python
# Anthropic Claude
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=0.7,
max_tokens=1024,
timeout=60.0
)
# OpenAI
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model="gpt-4-turbo-preview",
temperature=0.7
)
# Streaming
for chunk in llm.stream("Tell me a story"):
print(chunk.content, end="", flush=True)
```
**Output Parsers**:
```python
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
# String parser
str_parser = StrOutputParser()
# JSON parser
json_parser = JsonOutputParser()
# Structured output
class Person(BaseModel):
name: str = Field(description="Person's name")
age: int = Field(description="Person's age")
parser = PydanticOutputParser(pydantic_object=Person)
prompt = ChatPromptTemplate.from_template(
"Extract person info.\n{format_instructions}\n{query}"
)
chain = prompt | llm | parser
```
## RAG (Retrieval Augmented Generation)
### Document Loading
```python
from langchain_community.document_loaders import (
TextLoader,
PyPDFLoader,
DirectoryLoader,
WebBaseLoader
)
# Text files
loader = TextLoader("document.txt")
docs = loader.load()
# PDFs
loader = PyPDFLoader("document.pdf")
docs = loader.load()
# Directory of files
loader = DirectoryLoader(
"./docs",
glob="**/*.md",
show_progress=True
)
docs = loader.load()
# Web pages
loader = WebBaseLoader("https://example.com")
docs = loader.load()
```
### Text Splitting
```python
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
# Recursive splitter (recommended)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
chunks = text_splitter.split_documents(docs)
# Token-aware splitting
from langchain.text_splitter import TokenTextSplitter
splitter = TokenTextSplitter(
chunk_size=512,
chunk_overlap=50
)
```
### Vector Stores
```python
from langchain_community.vectorstores import Chroma, FAISS, Pinecone
from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
# Embeddings
embeddings = OpenAIEmbeddings()
# Chroma (local, persistent)
vectorstore = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
persist_directory="./chroma_db"
)
# FAISS (local, in-memory)
vectorstore = FAISS.from_documents(
documents=chunks,
embedding=embeddings
)
vectorstore.save_local("./faiss_index")
# Pinecone (cloud)
from langchain_community.vectorstores import Pinecone
import pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
vectorstore = Pinecone.from_documents(
documents=chunks,
embedding=embeddings,
index_name="langchain-index"
)
```
### RAG Chain
```python
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
# Create retriever
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 4}
)
# RAG prompt
template = """Answer based on context:
Context: {context}
Question: {question}
Answer:"""
prompt = ChatPromptTemplate.from_template(template)
# Format documents
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# RAG chain
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Query
answer = rag_chain.invoke("What is LangChain?")
```
### Advanced RAG Patterns
```python
# Multi-query retrieval
from langchain.retrievers.multi_query import MultiQueryRetriever
retriever = MultiQueryRetriever.from_llm(
retriever=vectorstore.as_retriever(),
llm=llm
)
# Contextual compression
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=vectorstore.as_retriever()
)
# Parent document retriever
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
store = InMemoryStore()
retriever = ParentDocumentRetriever(
vectorstore=vectorstore,
docstore=store,
child_splitter=text_splitter
)
```
## Agents and Tools
### Tool Creation
```python
from langchain.tools import tool
from langchain_core.tools import Tool
# Decorator approach
@tool
def search_wikipedia(query: str) -> str:
"""Search Wikipedia for information."""
# Implementation
return f"Results for: {query}"
# Class approach
from langchain.tools import BaseTool
from pydantic import BaseModel, Field
class CalculatorInput(BaseModel):
expression: str = Field(description="Mathematical expression")
class CalculatorTool(BaseTool):
name = "calculator"
description = "Useful for math calculations"
args_schema = CalculatorInput
def _run(self, expression: str) -> str:
return str(eval(expression))
# Pre-built tools
from langchain_community.tools import (
DuckDuckGoSearchRun,
WikipediaQueryRun,
PythonREPLTool
)
search = DuckDuckGoSearchRun()
wikipedia = WikipediaQueryRun()
python_repl = PythonREPLTool()
```
### Agent Types
```python
from langchain.agents import create_react_agent, AgentExecutor
from langchain import hub
# ReAct agent (recommended)
prompt = hub.pull("hwchase17/react")
tools = [search_wikipedia, CalculatorTool()]
agent = create_react_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
max_iterations=3,
handle_parsing_errors=True
)
result = agent_executor.invoke({"input": "What is 2+2 and who invented addition?"})
# Structured chat agent (function calling)
from langchain.agents import create_structured_chat_agent
agent = create_structured_chat_agent(llm, tools, prompt)
# OpenAI functions agent
from langchain.agents import create_openai_functions_agent
agent = create_openai_functions_agent(llm, tools, prompt)
```
### Agent with Memory
```python
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
memory=memory,
verbose=True
)
# Conversational loop
while True:
user_input = input("You: ")
if user_input.lower() == "exit":
break
response = agent_executor.invoke({"input": user_input})
print(f"Agent: {response['output']}")
```
## Memory Systems
### Memory Types
```python
from langchain.memory import (
ConversationBufferMemory,
ConversationBufferWindowMemory,
ConversationSummaryMemory,
ConversationSummaryBufferMemory
)
# Full conversation history
memory = ConversationBufferMemory(return_messages=True)
# Last K messages
memory = ConversationBufferWindowMemory(k=5, return_messages=True)
# Summarized history
memory = ConversationSummaryMemory(llm=llm, return_messages=True)
# Summary + recent buffer
memory = ConversationSummaryBufferMemory(
llm=llm,
max_token_limit=100,
return_messages=True
)
```
### Conversation Chain with Memory
```python
from langchain.chains import ConversationChain
conversation = ConversationChain(
llm=llm,
memory=ConversationBufferMemory()
)
conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?") # "Alice"
# Custom prompt with memory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages([
("system", "You are a helpful assistant."),
MessagesPlaceholder(variable_name="history"),
("human", "{input}")
])
chain = prompt | llm | StrOutputParser()
# Manual memory management
from langchain_core.messages import HumanMessage, AIMessage
history = []
def chat(user_input):
response = chain.invoke({"input": user_input, "history": history})
history.append(HumanMessage(content=user_input))
history.append(AIMessage(content=response))
return response
```
## Advanced Chain Patterns
### Sequential Chains
```python
from langchain.chains import SequentialChain, LLMChain
# Step 1: Generate synopsis
synopsis_chain = LLMChain(
llm=llm,
prompt=ChatPromptTemplate.from_template("Write synopsis for: {title}"),
output_key="synopsis"
)
# Step 2: Generate review
review_chain = LLMChain(
llm=llm,
prompt=ChatPromptTemplate.from_template("Review this synopsis: {synopsis}"),
output_key="review"
)
# Combine
overall_chain = SequentialChain(
chains=[synopsis_chain, review_chain],
input_variables=["title"],
output_variables=["synopsis", "review"],
verbose=True
)
result = overall_chain({"title": "AI Revolution"})
```
### Router Chains
```python
from langchain.chains.router import MultiPromptChain
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
# Define specialized prompts
physics_template = """You are a physics expert. Answer: {input}"""
math_template = """You are a math expert. Answer: {input}"""
prompt_infos = [
{
"name": "physics",
"description": "Good for physics questions",
"prompt_template": physics_template
},
{
"name": "math",
"description": "Good for math questions",
"prompt_template": math_template
}
]
# Create router
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations="\n".join(
[f"{p['name']}: {p['description']}" for p in prompt_infos]
))
router_prompt = ChatPromptTemplate.from_template(router_template)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
# Build multi-prompt chain
chain = MultiPromptChain(
router_chain=router_chain,
destination_chains={
"physics": LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template(physics_template)),
"math": LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template(math_template))
},
default_chain=LLMChain(llm=llm, prompt=ChatPromptTemplate.from_template("{input}")),
verbose=True
)
```
### Parallel Execution
```python
from langchain_core.runnables import RunnableParallel
# Execute multiple chains in parallel
parallel_chain = RunnableParallel(
summary=summary_chain,
translation=translation_chain,
sentiment=sentiment_chain
)
result = parallel_chain.invoke({"text": "Long article text..."})
# Returns: {"summary": "...", "translation": "...", "sentiment": "..."}
```
## Async Patterns
### Async Chains
```python
import asyncio
# Async invoke
async def process():
result = await chain.ainvoke({"input": "Hello"})
return result
# Async streaming
async def stream():
async for chunk in chain.astream({"input": "Tell me a story"}):
print(chunk, end="", flush=True)
# Async batch
async def batch():
results = await chain.abatch([
{"input": "Question 1"},
{"input": "Question 2"}
])
return results
# Run
asyncio.run(process())
```
### Concurrent Processing
```python
from langchain_core.runnables import RunnablePassthrough
async def process_documents(docs):
# Process multiple documents concurrently
tasks = [chain.ainvoke({"doc": doc}) for doc in docs]
results = await asyncio.gather(*tasks)
return results
# With rate limiting
from langchain.callbacks import get_openai_callback
async def process_with_limits(docs, max_concurrent=5):
semaphore = asyncio.Semaphore(max_concurrent)
async def process_one(doc):
async with semaphore:
return await chain.ainvoke({"doc": doc})
tasks = [process_one(doc) for doc in docs]
return await asyncio.gather(*tasks)
```
## LangSmith Tracing
### Setup and Configuration
```python
import os
# Enable LangSmith
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-langsmith-key"
os.environ["LANGCHAIN_PROJECT"] = "my-project"
# Trace automatically captures all LangChain operations
result = chain.invoke({"input": "Hello"})
# View trace at: https://smith.langchain.com
```
### Custom Tracing
```python
from langsmith import trace
@trace
def my_function(input_text):
# Custom function tracing
result = chain.invoke({"input": input_text})
return result
# Add metadata
from langchain.callbacks import LangChainTracer
tracer = LangChainTracer(
project_name="my-project",
metadata={"environment": "production", "version": "1.0"}
)
chain.invoke({"input": "Hello"}, config={"callbacks": [tracer]})
```
### Evaluation
```python
from langsmith import Client
from langchain.evaluation import load_evaluator
client = Client()
# Create dataset
dataset = client.create_dataset("my-dataset")
client.create_examples(
inputs=[{"input": "What is AI?"}],
outputs=[{"output": "Artificial Intelligence..."}],
dataset_id=dataset.id
)
# Evaluate
def predict(input_dict):
return chain.invoke(input_dict)
# Run evaluation
results = client.run_on_dataset(
dataset_name="my-dataset",
llm_or_chain_factory=lambda: chain,
evaluation=load_evaluator("qa"),
project_name="my-evaluation"
)
```
## Production Deployment
### Error Handling
```python
from langchain_core.runnables import RunnableWithFallbacks
# Fallback chain
primary_llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
fallback_llm = ChatOpenAI(model="gpt-4-turbo-preview")
chain = (prompt | primary_llm).with_fallbacks([prompt | fallback_llm])
# Retry logic
from langchain_core.runnables import RunnableRetry
chain_with_retry = chain.with_retry(
retry_if_exception_type=(RateLimitError,),
wait_exponential_jitter=True,
stop_after_attempt=3
)
# Error handling
try:
result = chain.invoke({"input": "Hello"})
except Exception as e:
logger.error(f"Chain failed: {e}")
# Handle gracefully
```
### Caching
```python
from langchain.cache import InMemoryCache, SQLiteCache
from langchain.globals import set_llm_cache
# In-memory cache
set_llm_cache(InMemoryCache())
# Persistent cache
set_llm_cache(SQLiteCache(database_path=".langchain.db"))
# Redis cache
from langchain.cache import RedisCache
import redis
set_llm_cache(RedisCache(redis_=redis.Redis()))
# Semantic cache
from langchain.cache import RedisSemanticCache
from langchain_openai import OpenAIEmbeddings
set_llm_cache(RedisSemanticCache(
redis_url="redis://localhost:6379",
embedding=OpenAIEmbeddings(),
score_threshold=0.8
))
```
### Rate Limiting
```python
from langchain.llms.base import BaseLLM
from ratelimit import limits, sleep_and_retry
class RateLimitedLLM(BaseLLM):
@sleep_and_retry
@limits(calls=50, period=60) # 50 calls per minute
def _call(self, prompt, stop=None, **kwargs):
return self.llm._call(prompt, stop, **kwargs)
# Token budget tracking
from langchain.callbacks import get_openai_callback
with get_openai_callback() as cb:
result = chain.invoke({"input": "Hello"})
print(f"Tokens used: {cb.total_tokens}")
print(f"Cost: ${cb.total_cost}")
```
### Monitoring
```python
from langchain.callbacks.base import BaseCallbackHandler
class MetricsCallback(BaseCallbackHandler):
def on_llm_start(self, serialized, prompts, **kwargs):
# Log LLM start
logger.info(f"LLM started: {prompts}")
def on_llm_end(self, response, **kwargs):
# Log LLM completion
logger.info(f"LLM completed: {response}")
def on_llm_error(self, error, **kwargs):
# Log errors
logger.error(f"LLM error: {error}")
# Use callback
chain.invoke({"input": "Hello"}, config={"callbacks": [MetricsCallback()]})
```
## Best Practices
### Code Organization
```python
# chains.py
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
def create_summarization_chain():
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
prompt = ChatPromptTemplate.from_template("Summarize: {text}")
return prompt | llm
# main.py
from chains import create_summarization_chain
chain = create_summarization_chain()
```
### Environment Configuration
```python
# config.py
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
anthropic_api_key: str
langsmith_api_key: str | None = None
langsmith_project: str = "default"
model_name: str = "claude-3-5-sonnet-20241022"
temperature: float = 0.7
class Config:
env_file = ".env"
settings = Settings()
# Use in chains
llm = ChatAnthropic(
model=settings.model_name,
temperature=settings.temperature,
anthropic_api_key=settings.anthropic_api_key
)
```
### Testing
```python
import pytest
from langchain_core.prompts import ChatPromptTemplate
def test_chain_output():
# Use mock LLM for testing
from langchain.llms.fake import FakeListLLM
llm = FakeListLLM(responses=["Mocked response"])
prompt = ChatPromptTemplate.from_template("Test: {input}")
chain = prompt | llm
result = chain.invoke({"input": "test"})
assert result == "Mocked response"
# Integration test
@pytest.mark.integration
def test_real_chain():
chain = create_summarization_chain()
result = chain.invoke({"text": "Long text..."})
assert len(result) > 0
```
## Common Pitfalls
### Memory Leaks
```python
# ❌ WRONG: Memory grows unbounded
memory = ConversationBufferMemory()
while True:
chain.invoke({"input": user_input}) # History never cleared
# ✅ CORRECT: Use windowed memory
memory = ConversationBufferWindowMemory(k=10)
# Or clear periodically
if len(memory.chat_memory.messages) > 100:
memory.clear()
```
### Inefficient Retrieval
```python
# ❌ WRONG: Retrieving too many documents
retriever = vectorstore.as_retriever(search_kwargs={"k": 100})
# ✅ CORRECT: Optimize k value
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
# ✅ BETTER: Use MMR for diversity
retriever = vectorstore.as_retriever(
search_type="mmr",
search_kwargs={"k": 4, "fetch_k": 20}
)
```
### Blocking Async
```python
# ❌ WRONG: Blocking in async context
async def process():
result = chain.invoke({"input": "test"}) # Blocks event loop
# ✅ CORRECT: Use async methods
async def process():
result = await chain.ainvoke({"input": "test"})
```
### Unstructured Outputs
```python
# ❌ WRONG: Parsing string outputs
result = chain.invoke({"input": "Extract name and age"})
# Then: parse result string manually
# ✅ CORRECT: Use structured output
from langchain.output_parsers import PydanticOutputParser
parser = PydanticOutputParser(pydantic_object=Person)
chain = prompt | llm | parser
result = chain.invoke({"input": "Extract name and age"})
# Returns: Person(name="John", age=30)
```
### Token Waste
```python
# ❌ WRONG: Sending full context every time
for question in questions:
chain.invoke({"context": long_document, "question": question})
# ✅ CORRECT: Use RAG retrieval
for question in questions:
relevant_docs = retriever.get_relevant_documents(question)
chain.invoke({"context": relevant_docs, "question": question})
```
## Quick Reference
**Installation**:
```bash
pip install langchain langchain-anthropic langchain-openai
pip install chromadb faiss-cpu # Vector stores
pip install langsmith # Observability
```
**Essential Imports**:
```python
from langchain_anthropic import ChatAnthropic
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
```
**Basic Chain**: `prompt | llm | parser`
**RAG Chain**: `retriever | format_docs | prompt | llm`
**With Memory**: Use `MessagesPlaceholder` in prompt + memory object
**Async**: Replace `invoke` with `ainvoke`, `stream` with `astream`
**Debugging**: Set `verbose=True` or enable LangSmith tracing
**Production**: Add error handling, caching, rate limiting, monitoring
This skill is a LangChain LLM application framework that provides chains, agents, RAG, and memory primitives for building production-grade AI applications. It bundles composable prompt and LLM components, retrieval and vector store integrations, agent tooling, and multiple memory strategies. The goal is to accelerate building conversational apps, RAG pipelines, and multi-step agent workflows.
It composes prompts, LLMs, and output parsers into runnable chains using a concise expression language (LCEL) or explicit chain classes. For RAG it loads and splits documents, creates embeddings and vector stores, builds retrievers, and injects context into LLM prompts. Agents wrap tools and memory to run iterative reasoning loops, while advanced chain patterns support routing, sequencing, parallelism, async streaming, and observability.
Which vector stores and embeddings are supported?
Local and hosted options are supported: Chroma, FAISS, Pinecone, plus OpenAI and HuggingFace embeddings integrations.
How do I keep RAG responses up to date?
Reload or incrementally add documents to your vector store, re-embed new content, and optionally use contextual compressors to reduce irrelevant context.