home / skills / bobmatnyc / claude-mpm-skills / json-data-handling
This skill helps you effectively parse, transform, and validate JSON data across Python and JavaScript, improving data reliability and processing.
npx playbooks add skill bobmatnyc/claude-mpm-skills --skill json-data-handlingReview the files below or copy the command above to add this skill to your agents.
---
name: json-data-handling
description: Working effectively with JSON data structures.
updated_at: 2025-10-30T17:00:00Z
tags: [json, data, parsing, serialization]
progressive_disclosure:
entry_point:
summary: "Working effectively with JSON data structures."
when_to_use: "When working with data, databases, or data transformations."
quick_start: "1. Review the core concepts below. 2. Apply patterns to your use case. 3. Follow best practices for implementation."
---
# JSON Data Handling
Working effectively with JSON data structures.
## Python
### Basic Operations
```python
import json
# Parse JSON string
data = json.loads('{"name": "John", "age": 30}')
# Convert to JSON string
json_str = json.dumps(data)
# Pretty print
json_str = json.dumps(data, indent=2)
# Read from file
with open('data.json', 'r') as f:
data = json.load(f)
# Write to file
with open('output.json', 'w') as f:
json.dump(data, f, indent=2)
```
### Advanced
```python
# Custom encoder for datetime
from datetime import datetime
class DateTimeEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
json_str = json.dumps({'date': datetime.now()}, cls=DateTimeEncoder)
# Handle None values
json.dumps(data, skipkeys=True)
# Sort keys
json.dumps(data, sort_keys=True)
```
## JavaScript
### Basic Operations
```javascript
// Parse JSON string
const data = JSON.parse('{"name": "John", "age": 30}');
// Convert to JSON string
const jsonStr = JSON.stringify(data);
// Pretty print
const jsonStr = JSON.stringify(data, null, 2);
// Read from file (Node.js)
const fs = require('fs');
const data = JSON.parse(fs.readFileSync('data.json', 'utf8'));
// Write to file
fs.writeFileSync('output.json', JSON.stringify(data, null, 2));
```
### Advanced
```javascript
// Custom replacer
const jsonStr = JSON.stringify(data, (key, value) => {
if (typeof value === 'bigint') {
return value.toString();
}
return value;
});
// Filter properties
const filtered = JSON.stringify(data, ['name', 'age']);
// Handle circular references
const getCircularReplacer = () => {
const seen = new WeakSet();
return (key, value) => {
if (typeof value === 'object' && value !== null) {
if (seen.has(value)) return;
seen.add(value);
}
return value;
};
};
JSON.stringify(circularObj, getCircularReplacer());
```
## Common Patterns
### Validation
```python
from jsonschema import validate
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number", "minimum": 0}
},
"required": ["name", "age"]
}
# Validate
validate(instance=data, schema=schema)
```
### Deep Merge
```python
def deep_merge(dict1, dict2):
result = dict1.copy()
for key, value in dict2.items():
if key in result and isinstance(result[key], dict) and isinstance(value, dict):
result[key] = deep_merge(result[key], value)
else:
result[key] = value
return result
```
### Nested Access
```python
# Safe nested access
def get_nested(data, *keys, default=None):
for key in keys:
try:
data = data[key]
except (KeyError, TypeError, IndexError):
return default
return data
# Usage
value = get_nested(data, 'user', 'address', 'city', default='Unknown')
```
### Transform Keys
```python
# Convert snake_case to camelCase
def to_camel_case(snake_str):
components = snake_str.split('_')
return components[0] + ''.join(x.title() for x in components[1:])
def transform_keys(obj):
if isinstance(obj, dict):
return {to_camel_case(k): transform_keys(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [transform_keys(item) for item in obj]
return obj
```
## Best Practices
### ✅ DO
```python
# Use context managers for files
with open('data.json', 'r') as f:
data = json.load(f)
# Handle exceptions
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Invalid JSON: {e}")
# Validate structure
assert 'required_field' in data
```
### ❌ DON'T
```python
# Don't parse untrusted JSON without validation
data = json.loads(user_input) # Validate first!
# Don't load huge files at once
# Use streaming for large files
# Don't use eval() as alternative to json.loads()
data = eval(json_str) # NEVER DO THIS!
```
## Streaming Large JSON
```python
import ijson
# Stream large JSON file
with open('large_data.json', 'rb') as f:
objects = ijson.items(f, 'item')
for obj in objects:
process(obj)
```
## Remember
- Always validate JSON structure
- Handle parse errors gracefully
- Use schemas for complex structures
- Stream large JSON files
- Pretty print for debugging
This skill provides practical patterns and helpers for working effectively with JSON data structures in Python and JavaScript. It covers parsing, serialization, streaming, validation, deep merging, nested access, and key transformation. The content focuses on reliable, production-ready techniques for handling common JSON problems.
The skill documents concrete code snippets and small utilities that parse and serialize JSON, read/write files safely, and handle edge cases like datetimes, bigints, and circular references. It includes validation using JSON Schema, streaming for large files, deep merge and nested-safe access helpers, and key transformation utilities to convert naming conventions. Examples show both Python and Node.js approaches and highlight defensive error handling.
How do I handle datetimes and non-serializable types?
Provide a custom encoder/serializer (e.g., subclass json.JSONEncoder in Python or a replacer in JSON.stringify) to convert unsupported types to strings or standard formats like ISO 8601.
When should I stream JSON instead of loading it all?
Stream when files are large enough to risk memory exhaustion or when you can process records incrementally — for example, multi-GB exports or continuous event logs.