home / skills / benchflow-ai / skillsbench / python-scala-syntax-mapping

This skill translates Python syntax constructs to their Scala equivalents, helping you port code accurately with idiomatic mappings.

npx playbooks add skill benchflow-ai/skillsbench --skill python-scala-syntax-mapping

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
4.0 KB
---
name: python-scala-syntax-mapping
description: Reference guide for translating Python syntax constructs to Scala equivalents. Use when converting Python code to Scala and need mappings for basic syntax elements like variable declarations, control flow, comprehensions, string formatting, and common operators.
---

# Python to Scala Syntax Mapping

## Variable Declarations

| Python | Scala |
|--------|-------|
| `x = 5` | `val x = 5` (immutable) or `var x = 5` (mutable) |
| `x: int = 5` | `val x: Int = 5` |
| `x, y = 1, 2` | `val (x, y) = (1, 2)` |

Prefer `val` over `var` unless mutation is required.

## Type Mappings

| Python | Scala |
|--------|-------|
| `int` | `Int` |
| `float` | `Double` |
| `str` | `String` |
| `bool` | `Boolean` |
| `None` | `None` (of type `Option`) or `null` |
| `list[T]` | `List[T]` or `Seq[T]` |
| `dict[K, V]` | `Map[K, V]` |
| `set[T]` | `Set[T]` |
| `tuple[A, B]` | `(A, B)` or `Tuple2[A, B]` |
| `Optional[T]` | `Option[T]` |

## Control Flow

### Conditionals

```python
# Python
if x > 0:
    result = "positive"
elif x < 0:
    result = "negative"
else:
    result = "zero"
```

```scala
// Scala - if is an expression
val result = if (x > 0) "positive"
             else if (x < 0) "negative"
             else "zero"
```

### Loops

```python
# Python for loop
for i in range(10):
    print(i)

for item in items:
    process(item)

for i, item in enumerate(items):
    print(f"{i}: {item}")
```

```scala
// Scala equivalents
for (i <- 0 until 10) println(i)

for (item <- items) process(item)

for ((item, i) <- items.zipWithIndex) println(s"$i: $item")
```

### While loops

```python
# Python
while condition:
    do_something()
```

```scala
// Scala
while (condition) {
  doSomething()
}
```

## Comprehensions

```python
# Python list comprehension
squares = [x ** 2 for x in range(10)]
evens = [x for x in numbers if x % 2 == 0]
pairs = [(x, y) for x in xs for y in ys]
```

```scala
// Scala for-comprehensions or map/filter
val squares = (0 until 10).map(x => x * x).toList
val evens = numbers.filter(_ % 2 == 0)
val pairs = for { x <- xs; y <- ys } yield (x, y)
```

## Functions

```python
# Python
def add(a: int, b: int) -> int:
    return a + b

# Lambda
square = lambda x: x ** 2

# Default arguments
def greet(name: str, greeting: str = "Hello") -> str:
    return f"{greeting}, {name}!"
```

```scala
// Scala
def add(a: Int, b: Int): Int = a + b

// Lambda
val square: Int => Int = x => x * x
// or shorter: val square = (x: Int) => x * x

// Default arguments
def greet(name: String, greeting: String = "Hello"): String =
  s"$greeting, $name!"
```

## String Formatting

| Python | Scala |
|--------|-------|
| `f"Hello, {name}!"` | `s"Hello, $name!"` |
| `f"Value: {x:.2f}"` | `f"Value: $x%.2f"` |
| `f"{x + y}"` | `s"${x + y}"` |

## Common Operators

| Python | Scala |
|--------|-------|
| `**` (power) | `math.pow(x, y)` or use `scala.math.pow` |
| `//` (floor div) | `x / y` (for Int) or `math.floor(x / y)` |
| `%` (modulo) | `%` |
| `and`, `or`, `not` | `&&`, `||`, `!` |
| `in` | `.contains()` |
| `is` | `eq` (reference equality) |
| `==` | `==` (value equality) |

## Exception Handling

```python
# Python
try:
    result = risky_operation()
except ValueError as e:
    handle_error(e)
finally:
    cleanup()
```

```scala
// Scala
import scala.util.{Try, Success, Failure}

// Pattern 1: try-catch
try {
  val result = riskyOperation()
} catch {
  case e: IllegalArgumentException => handleError(e)
} finally {
  cleanup()
}

// Pattern 2: Try monad (preferred for functional style)
val result = Try(riskyOperation()) match {
  case Success(value) => value
  case Failure(e) => handleError(e)
}
```

## None/Null Handling

```python
# Python
if value is None:
    return default
return process(value)

# Or
result = value if value is not None else default
```

```scala
// Scala - use Option
val result = optionValue match {
  case Some(v) => process(v)
  case None => default
}

// Or more concisely
val result = optionValue.map(process).getOrElse(default)
```

Overview

This skill is a concise reference guide for translating common Python syntax constructs to Scala equivalents. It focuses on basic elements like variable declarations, type mappings, control flow, comprehensions, functions, string formatting, operators, and null/option handling. Use it to speed up language migration and to reduce syntax errors when converting Python code to idiomatic Scala.

How this skill works

The guide lists direct mappings and small code examples showing Python constructs alongside their Scala counterparts. It highlights idiomatic Scala alternatives (val vs var, Option, Try, for-comprehensions) and gives patterns for loops, comprehensions, exception handling, and common operators. It also calls out type name differences and recommended functional patterns for safer null handling.

When to use it

  • Converting Python scripts or modules to Scala for performance or JVM integration.
  • Refactoring Python code into a Scala codebase while keeping behavior consistent.
  • Learning idiomatic Scala equivalents for common Python constructs.
  • Reviewing type and null-handling differences when designing APIs across languages.
  • Quickly mapping comprehensions, formatting, and exception patterns between languages.

Best practices

  • Prefer val over var; use mutation only when necessary.
  • Use Option[T] instead of null to represent absent values and prefer map/getOrElse.
  • Favor for-comprehensions and collection methods (map/filter/zipWithIndex) over manual loops where possible.
  • Use scala.util.Try or pattern matching for functional error handling instead of broad try/catch.
  • Map Python built-in types to Scala equivalents (int -> Int, float -> Double, str -> String).

Example use cases

  • Translate Python list comprehensions into Scala for-comprehensions or .map/.filter chains.
  • Convert Python functions with default args and type hints into Scala defs with typed parameters and defaults.
  • Replace Python None checks by wrapping values in Option and using getOrElse or pattern matching.
  • Change Python exception handling into Try-based flows or structured try/catch blocks in Scala.
  • Rewrite Python loops (range, enumerate, iterables) to Scala for-loops or collection operations.

FAQ

How do I represent Python None in Scala?

Prefer Option[T] and use Some(value) or None; use getOrElse or pattern matching to handle absence.

Should I always use val instead of var?

Yes—prefer val for immutability and clearer reasoning; use var only when you truly need mutable state.