home / skills / benchflow-ai / skillsbench / openai-vision

This skill analyzes images and sequences, extracts text, and identifies changes across frames to provide detailed visual insights.

npx playbooks add skill benchflow-ai/skillsbench --skill openai-vision

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
19.5 KB
---
name: openai-vision
description: Analyze images and multi-frame sequences using OpenAI GPT vision models
---

# OpenAI Vision Analysis Skill

## Purpose
This skill enables image analysis, scene understanding, text extraction, and multi-frame comparison using OpenAI's vision-capable GPT models (e.g., `gpt-4o`, `gpt-4o-mini`). It supports single images, multiple images for comparison, and sequential frames for temporal analysis.

## When to Use
- Analyzing image content (objects, scenes, colors, spatial relationships)
- Extracting and reading text from images (OCR via vision models)
- Comparing multiple images to detect differences or changes
- Processing video frames to understand temporal progression
- Generating detailed image descriptions or captions
- Answering questions about visual content

## Required Libraries

The following Python libraries are required:

```python
from openai import OpenAI
import base64
import json
import os
from pathlib import Path
```

## Input Requirements
- **File formats**: JPG, JPEG, PNG, WEBP, non-animated GIF
- **Image sources**: URL, Base64-encoded data, or local file paths
- **Size limits**: Up to 20MB per image; total request payload under 50MB
- **Maximum images**: Up to 500 images per request
- **Image quality**: Clear, legible content; avoid watermarks or heavy distortions

## Output Schema
Analysis results should be returned as valid JSON conforming to this schema:

```json
{
  "success": true,
  "images_analyzed": 1,
  "analysis": {
    "description": "A detailed scene description...",
    "objects": [
      {"name": "car", "color": "red", "position": "foreground center"},
      {"name": "tree", "count": 3, "position": "background"}
    ],
    "text_content": "Any text visible in the image...",
    "colors": ["blue", "green", "white"],
    "scene_type": "outdoor/urban"
  },
  "comparison": {
    "differences": ["Object X appeared", "Color changed from A to B"],
    "similarities": ["Background unchanged", "Layout consistent"]
  },
  "metadata": {
    "model_used": "gpt-4o",
    "detail_level": "high",
    "token_usage": {"prompt": 1500, "completion": 200}
  },
  "warnings": []
}
```

### Field Descriptions

- `success`: Boolean indicating whether analysis completed
- `images_analyzed`: Number of images processed in the request
- `analysis.description`: Natural language description of the image content
- `analysis.objects`: Array of detected objects with attributes
- `analysis.text_content`: Any text extracted from the image
- `analysis.colors`: Dominant colors identified
- `analysis.scene_type`: Classification of the scene
- `comparison`: Present when multiple images are analyzed; describes differences and similarities
- `metadata.model_used`: The GPT model used for analysis
- `metadata.detail_level`: Resolution level used (`low`, `high`, or `auto`)
- `metadata.token_usage`: Token consumption for cost tracking
- `warnings`: Array of any issues or limitations encountered


## Code Examples

### Basic Image Analysis from URL

```python
from openai import OpenAI

client = OpenAI()

def analyze_image_url(image_url, prompt="Describe this image in detail."):
    """Analyze an image from a URL using GPT-4o vision."""
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": image_url,
                            "detail": "high"
                        }
                    }
                ]
            }
        ],
        max_tokens=1000
    )
    return response.choices[0].message.content
```

### Image Analysis from Local File (Base64)

```python
from openai import OpenAI
import base64

client = OpenAI()

def encode_image_to_base64(image_path):
    """Encode a local image file to base64."""
    with open(image_path, "rb") as image_file:
        return base64.standard_b64encode(image_file.read()).decode("utf-8")

def get_image_media_type(image_path):
    """Determine the media type based on file extension."""
    ext = image_path.lower().split('.')[-1]
    media_types = {
        'jpg': 'image/jpeg',
        'jpeg': 'image/jpeg',
        'png': 'image/png',
        'gif': 'image/gif',
        'webp': 'image/webp'
    }
    return media_types.get(ext, 'image/jpeg')

def analyze_local_image(image_path, prompt="Describe this image in detail."):
    """Analyze a local image file using GPT-4o vision."""
    base64_image = encode_image_to_base64(image_path)
    media_type = get_image_media_type(image_path)
    
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:{media_type};base64,{base64_image}",
                            "detail": "high"
                        }
                    }
                ]
            }
        ],
        max_tokens=1000
    )
    return response.choices[0].message.content
```

### Multi-Image Comparison

```python
from openai import OpenAI
import base64

client = OpenAI()

def compare_images(image_paths, comparison_prompt=None):
    """Compare multiple images and identify differences."""
    if comparison_prompt is None:
        comparison_prompt = (
            "Compare these images carefully. "
            "List all differences and similarities you observe. "
            "Describe any changes in objects, colors, positions, or text."
        )
    
    content = [{"type": "text", "text": comparison_prompt}]
    
    for i, image_path in enumerate(image_paths):
        base64_image = encode_image_to_base64(image_path)
        media_type = get_image_media_type(image_path)
        
        # Add label for each image
        content.append({
            "type": "text", 
            "text": f"Image {i + 1}:"
        })
        content.append({
            "type": "image_url",
            "image_url": {
                "url": f"data:{media_type};base64,{base64_image}",
                "detail": "high"
            }
        })
    
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": content}],
        max_tokens=2000
    )
    return response.choices[0].message.content
```

### Multi-Frame Video Analysis

```python
from openai import OpenAI
import base64
from pathlib import Path

client = OpenAI()

def analyze_video_frames(frame_paths, analysis_prompt=None):
    """Analyze a sequence of video frames for temporal understanding."""
    if analysis_prompt is None:
        analysis_prompt = (
            "These are sequential frames from a video. "
            "Describe what is happening over time. "
            "Identify any motion, changes, or events that occur across the frames."
        )
    
    content = [{"type": "text", "text": analysis_prompt}]
    
    for i, frame_path in enumerate(frame_paths):
        base64_image = encode_image_to_base64(frame_path)
        media_type = get_image_media_type(frame_path)
        
        content.append({
            "type": "text",
            "text": f"Frame {i + 1}:"
        })
        content.append({
            "type": "image_url",
            "image_url": {
                "url": f"data:{media_type};base64,{base64_image}",
                "detail": "auto"  # Use auto for frames to balance cost
            }
        })
    
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": content}],
        max_tokens=2000
    )
    return response.choices[0].message.content
```

### Full Analysis with JSON Output

```python
from openai import OpenAI
import base64
import json
import os

client = OpenAI()

def analyze_image_to_json(image_path, extract_text=True):
    """Perform comprehensive image analysis and return structured JSON."""
    filename = os.path.basename(image_path)
    
    prompt = """Analyze this image and return a JSON object with the following structure:
{
    "description": "detailed scene description",
    "objects": [{"name": "object name", "attributes": "color, size, position"}],
    "text_content": "any visible text or null if none",
    "colors": ["dominant", "colors"],
    "scene_type": "indoor/outdoor/abstract/etc",
    "people_count": 0,
    "notable_features": ["list of notable visual elements"]
}

Return ONLY valid JSON, no other text."""

    try:
        base64_image = encode_image_to_base64(image_path)
        media_type = get_image_media_type(image_path)
        
        response = client.chat.completions.create(
            model="gpt-4o",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:{media_type};base64,{base64_image}",
                                "detail": "high"
                            }
                        }
                    ]
                }
            ],
            max_tokens=1500
        )
        
        # Parse the response as JSON
        analysis_text = response.choices[0].message.content
        # Remove markdown code blocks if present
        if analysis_text.startswith("```"):
            analysis_text = analysis_text.split("```")[1]
            if analysis_text.startswith("json"):
                analysis_text = analysis_text[4:]
        analysis = json.loads(analysis_text.strip())
        
        result = {
            "success": True,
            "filename": filename,
            "analysis": analysis,
            "metadata": {
                "model_used": "gpt-4o",
                "detail_level": "high",
                "token_usage": {
                    "prompt": response.usage.prompt_tokens,
                    "completion": response.usage.completion_tokens
                }
            },
            "warnings": []
        }
        
    except json.JSONDecodeError as e:
        result = {
            "success": False,
            "filename": filename,
            "analysis": {"raw_response": response.choices[0].message.content},
            "metadata": {"model_used": "gpt-4o"},
            "warnings": [f"Failed to parse JSON: {str(e)}"]
        }
    except Exception as e:
        result = {
            "success": False,
            "filename": filename,
            "analysis": {},
            "metadata": {},
            "warnings": [f"Analysis failed: {str(e)}"]
        }
    
    return result

# Usage
result = analyze_image_to_json("photo.jpg")
print(json.dumps(result, indent=2))
```

### Batch Processing Directory

```python
from openai import OpenAI
import base64
import json
from pathlib import Path

client = OpenAI()

def process_image_directory(directory_path, output_file, prompt=None):
    """Process all images in a directory and save results."""
    if prompt is None:
        prompt = "Describe this image briefly, including any visible text."
    
    image_extensions = {'.jpg', '.jpeg', '.png', '.webp', '.gif'}
    results = []
    
    for file_path in sorted(Path(directory_path).iterdir()):
        if file_path.suffix.lower() in image_extensions:
            print(f"Processing: {file_path.name}")
            
            try:
                analysis = analyze_local_image(str(file_path), prompt)
                results.append({
                    "filename": file_path.name,
                    "success": True,
                    "analysis": analysis
                })
            except Exception as e:
                results.append({
                    "filename": file_path.name,
                    "success": False,
                    "error": str(e)
                })
    
    # Save results
    with open(output_file, 'w') as f:
        json.dump(results, f, indent=2)
    
    return results
```


## Detail Level Configuration

The `detail` parameter controls image resolution and token usage:

```python
# Low detail: 512x512 fixed, ~85 tokens per image
# Best for: Quick summaries, dominant colors, general scene type
{"detail": "low"}

# High detail: Full resolution processing
# Best for: Reading text, detecting small objects, detailed analysis
{"detail": "high"}

# Auto: Model decides based on image size
# Best for: General use when cost vs quality tradeoff is acceptable
{"detail": "auto"}
```

### Choosing Detail Level

```python
def get_recommended_detail(task_type):
    """Recommend detail level based on task type."""
    high_detail_tasks = {
        'ocr', 'text_extraction', 'document_analysis',
        'small_object_detection', 'detailed_comparison',
        'fine_grained_analysis'
    }
    
    low_detail_tasks = {
        'scene_classification', 'dominant_colors',
        'general_description', 'thumbnail_preview'
    }
    
    if task_type.lower() in high_detail_tasks:
        return "high"
    elif task_type.lower() in low_detail_tasks:
        return "low"
    else:
        return "auto"
```


## Text Extraction (Vision-based OCR)

For extracting text from images using vision models:

```python
def extract_text_from_image(image_path, preserve_layout=False):
    """Extract text from an image using GPT-4o vision."""
    if preserve_layout:
        prompt = (
            "Extract ALL text visible in this image. "
            "Preserve the original layout and formatting as much as possible. "
            "Include headers, paragraphs, captions, and any other text. "
            "Return only the extracted text, nothing else."
        )
    else:
        prompt = (
            "Extract all text visible in this image. "
            "Return the text in reading order (top to bottom, left to right). "
            "Return only the extracted text, nothing else."
        )
    
    return analyze_local_image(image_path, prompt)


def extract_structured_text(image_path):
    """Extract text with structure information as JSON."""
    prompt = """Extract all text from this image and return as JSON:
{
    "headers": ["list of headers/titles"],
    "paragraphs": ["list of paragraph texts"],
    "labels": ["list of labels or captions"],
    "other_text": ["any other text elements"],
    "reading_order": ["all text in reading order"]
}
Return ONLY valid JSON."""
    
    response = analyze_local_image(image_path, prompt)
    
    try:
        # Clean and parse JSON
        if response.startswith("```"):
            response = response.split("```")[1]
            if response.startswith("json"):
                response = response[4:]
        return json.loads(response.strip())
    except json.JSONDecodeError:
        return {"raw_text": response, "parse_error": True}
```


## Error Handling

### Common Issues and Solutions

**Issue**: API rate limits exceeded

```python
import time
from openai import RateLimitError

def analyze_with_retry(image_path, prompt, max_retries=3):
    """Analyze image with exponential backoff retry."""
    for attempt in range(max_retries):
        try:
            return analyze_local_image(image_path, prompt)
        except RateLimitError:
            if attempt < max_retries - 1:
                wait_time = 2 ** attempt  # Exponential backoff
                print(f"Rate limited, waiting {wait_time}s...")
                time.sleep(wait_time)
            else:
                raise
```

**Issue**: Image too large

```python
from PIL import Image
import io

def resize_image_if_needed(image_path, max_size_mb=15):
    """Resize image if it exceeds size limit."""
    file_size_mb = os.path.getsize(image_path) / (1024 * 1024)
    
    if file_size_mb <= max_size_mb:
        return encode_image_to_base64(image_path)
    
    # Resize the image
    img = Image.open(image_path)
    
    # Calculate new dimensions (reduce by 50% iteratively)
    while file_size_mb > max_size_mb:
        new_width = img.width // 2
        new_height = img.height // 2
        img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
        
        # Check new size
        buffer = io.BytesIO()
        img.save(buffer, format='JPEG', quality=85)
        file_size_mb = len(buffer.getvalue()) / (1024 * 1024)
    
    # Encode resized image
    buffer = io.BytesIO()
    img.save(buffer, format='JPEG', quality=85)
    return base64.standard_b64encode(buffer.getvalue()).decode("utf-8")
```

**Issue**: Invalid image format

```python
def validate_image(image_path):
    """Validate image before processing."""
    valid_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.webp'}
    
    path = Path(image_path)
    
    if not path.exists():
        return False, "File does not exist"
    
    if path.suffix.lower() not in valid_extensions:
        return False, f"Unsupported format: {path.suffix}"
    
    try:
        with Image.open(image_path) as img:
            img.verify()
        return True, "Valid image"
    except Exception as e:
        return False, f"Invalid image: {str(e)}"
```


## Quality Self-Check

Before returning results, verify:

- [ ] API response was received successfully
- [ ] Output is valid JSON (if structured output requested)
- [ ] All requested analysis fields are present
- [ ] Token usage is within expected bounds
- [ ] No error messages in the response
- [ ] For multi-image: all images were processed
- [ ] Confidence/warnings are included when analysis is uncertain


## Limitations

- **Medical imagery**: Not suitable for diagnostic analysis of CT scans, X-rays, or MRIs
- **Small text**: Text smaller than ~12pt may be misread; use `detail: high`
- **Rotated/skewed text**: Accuracy decreases with text rotation; pre-process if needed
- **Non-Latin scripts**: Lower accuracy for complex scripts (CJK, Arabic, etc.)
- **Object counting**: Approximate counts only; may miss or double-count similar objects
- **Spatial precision**: Cannot provide pixel-accurate bounding boxes or measurements
- **Panoramic/fisheye**: Distorted images reduce analysis accuracy
- **Graphs and charts**: May misinterpret line styles, legends, or data points
- **Metadata**: Cannot access EXIF data, camera info, or GPS coordinates from images
- **Cost**: High-detail analysis of many images can be expensive; monitor token usage


## Token Cost Estimation

Approximate token costs for image inputs:

| Detail Level | Tokens per Image | Best For |
|-------------|------------------|----------|
| low | ~85 tokens (fixed) | Quick classification, color detection |
| high | 85 + 170 per 512x512 tile | OCR, detailed analysis, small objects |
| auto | Variable | General use |

```python
def estimate_image_tokens(image_path, detail="high"):
    """Estimate token usage for an image."""
    if detail == "low":
        return 85
    
    with Image.open(image_path) as img:
        width, height = img.size
    
    # High detail: image is scaled to fit in 2048x2048, then tiled at 512x512
    scale = min(2048 / max(width, height), 1.0)
    scaled_width = int(width * scale)
    scaled_height = int(height * scale)
    
    # Ensure minimum 768 on shortest side
    if min(scaled_width, scaled_height) < 768:
        scale = 768 / min(scaled_width, scaled_height)
        scaled_width = int(scaled_width * scale)
        scaled_height = int(scaled_height * scale)
    
    # Calculate tiles
    tiles_x = (scaled_width + 511) // 512
    tiles_y = (scaled_height + 511) // 512
    total_tiles = tiles_x * tiles_y
    
    return 85 + (170 * total_tiles)
```


## Version History

- **1.0.0** (2026-01-21): Initial release with GPT-4o vision support

Overview

This skill analyzes images and multi-frame sequences using OpenAI GPT vision models to produce structured visual understanding, OCR results, and multi-image comparisons. It supports URLs, base64, and local files, and returns detailed JSON summaries suitable for automation and downstream processing. Use it to detect objects, extract text, identify colors, and compare frames over time.

How this skill works

Send one or more images with a text prompt and a detail setting (low, high, auto). The model inspects visual content to produce a JSON analysis that includes descriptions, detected objects with attributes, extracted text, dominant colors, scene classification, and optional comparison results across images. For sequences, the skill produces temporal observations such as motion, events, and changes between frames.

When to use it

  • Extract text from photos, scans, or screenshots (OCR).
  • Generate structured scene descriptions and object lists for indexing or search.
  • Compare multiple images to detect differences or confirm consistency.
  • Analyze sequential frames from video to summarize actions or detect events.
  • Produce JSON-ready outputs for automation, monitoring, or archival workflows.

Best practices

  • Choose detail level to match the task: high for OCR and fine-grained detection, low for quick summaries to save cost.
  • Provide clear, legible images without heavy compression, watermarks, or extreme occlusion.
  • Limit each image to supported formats (JPG, PNG, WEBP, non-animated GIF) and keep per-image size under 20MB.
  • When batching many images, paginate requests to stay under total payload limits and track token usage.
  • Include short guiding prompts when you need specific output structure (for example, request only JSON).

Example use cases

  • Document digitization: extract and preserve text and layout from photographed documents.
  • Quality assurance: compare product photos across production stages to detect defects or deviations.
  • Security or monitoring: analyze frame sequences to detect motion, object arrivals, or unusual events.
  • Media captioning: generate detailed image descriptions and lists of prominent objects and colors for metadata.
  • Dataset labeling: produce structured object lists and attributes to accelerate annotation and search.

FAQ

What image sources are supported?

URLs, data URIs (base64), and local file paths in JPG, JPEG, PNG, WEBP, and non-animated GIF formats.

How many images can I send in one request?

The skill supports up to 500 images per request but practical limits depend on payload size and token usage; keep total payload under 50MB.

When should I use high vs auto vs low detail?

Use high for OCR and small-object detection, low for fast scene summaries and dominant colors, and auto to let the model balance quality and cost.