home / skills / benchflow-ai / skillsbench / gemini-video-understanding

This skill enables analyzing videos with Gemini API to extract summaries, transcripts with timestamps, scene detection, clipping, FPS control, and YouTube

npx playbooks add skill benchflow-ai/skillsbench --skill gemini-video-understanding

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
9.4 KB
---
name: gemini-video-understanding
description: Analyze videos with Google Gemini API (summaries, Q&A, transcription with timestamps + visual context, scene/timeline detection, video clipping, FPS control, multi-video comparison, and YouTube URL analysis).
---

# Gemini Video Understanding Skill

## Purpose
This skill enables video understanding workflows using the Google Gemini API, including **video summarization**, **question answering**, **transcription with optional visual descriptions**, **timestamp-based queries (MM:SS)**, **scene/timeline detection**, **video clipping**, **custom FPS sampling**, **multi-video comparison**, and **YouTube URL analysis**.

## When to Use
- Summarizing a video into key points or chapters
- Answering questions about what happens at specific timestamps (MM:SS)
- Producing a transcript (optionally with visual context) and speaker labels
- Detecting scene changes or building a timeline of events
- Analyzing long videos by clipping to relevant segments or reducing FPS
- Comparing multiple videos (up to 10 videos on Gemini 2.5+)
- Analyzing public YouTube videos directly via URL

## Required Libraries

The following Python libraries are required:

```python
from google import genai
from google.genai import types
import os
import time
```

## Input Requirements
- **File formats**: MP4, MPEG, MOV, AVI, FLV, MPG, WebM, WMV, 3GPP
- **Size constraints**:
  - Use inline bytes for small files (rule of thumb: <20MB).
  - Use the File API upload flow for larger videos (most real videos).
- **YouTube**:
  - Video must be **public** (not private/unlisted) and not age-restricted.
  - Provide a valid YouTube URL.
- **Duration / context window** (model-dependent):
  - 2M-token models: ~2 hours (default resolution) or ~6 hours (low-res).
  - 1M-token models: ~1 hour (default) or ~3 hours (low-res).
- **Timestamps**: Use **MM:SS** (e.g., `01:15`) when requesting time-based answers.

## Output Schema
All extracted/derived content should be returned as valid JSON conforming to this schema:

```json
{
  "success": true,
  "source": {
    "type": "file|youtube",
    "id": "video.mp4|VIDEO_ID_OR_URL",
    "model": "gemini-2.5-flash"
  },
  "summary": "Concise summary of the video...",
  "transcript": {
    "available": true,
    "text": "Full transcript text (may include speaker labels)...",
    "includes_visual_descriptions": true
  },
  "events": [
    {
      "timestamp": "MM:SS",
      "description": "What happens at this time",
      "category": "scene_change|key_point|action|other"
    }
  ],
  "warnings": [
    "Optional warnings about limitations, missing timestamps, or low confidence areas"
  ]
}
```

### Field Descriptions
- `success`: Whether the analysis completed successfully
- `source.type`: `file` for uploaded/local content, `youtube` for YouTube analysis
- `source.id`: Filename for local uploads, or URL/ID for YouTube
- `source.model`: Gemini model used for the request
- `summary`: High-level video summary
- `transcript.*`: Transcript payload (may be omitted or `available=false` if not requested)
- `events`: Timeline items with **MM:SS** timestamps (chapters, scene changes, key actions)
- `warnings`: Any issues that could affect correctness (e.g., “timestamp not found”, “long video clipped”)

## Code Examples

### Basic Video Analysis (Local Video + File API)

```python
from google import genai
import os
import time

client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))

# Upload video (File API for >20MB)
myfile = client.files.upload(file="video.mp4")

# Wait for processing
while myfile.state.name == "PROCESSING":
    time.sleep(1)
    myfile = client.files.get(name=myfile.name)

if myfile.state.name == "FAILED":
    raise ValueError("Video processing failed")

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=["Summarize this video in 3 key points", myfile],
)

print(response.text)
```

### YouTube Video Analysis (Public Videos Only)

```python
from google import genai
from google.genai import types
import os

client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Summarize the main topics discussed",
        types.Part.from_uri(
            uri="https://www.youtube.com/watch?v=VIDEO_ID",
            mime_type="video/mp4",
        ),
    ],
)

print(response.text)
```

### Inline Video (<20MB)

```python
from google import genai
from google.genai import types
import os

client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))

with open("short-clip.mp4", "rb") as f:
    video_bytes = f.read()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "What happens in this video?",
        types.Part.from_bytes(data=video_bytes, mime_type="video/mp4"),
    ],
)

print(response.text)
```

### Video Clipping (Analyze a Segment Only)

```python
from google.genai import types

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Summarize this segment",
        types.Part.from_video_metadata(
            file_uri=myfile.uri,
            start_offset="40s",
            end_offset="80s",
        ),
    ],
)
```

### Custom Frame Rate (Token/Cost Control)

```python
from google.genai import types

# Lower FPS for static content (saves tokens)
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Analyze this presentation",
        types.Part.from_video_metadata(file_uri=myfile.uri, fps=0.5),
    ],
)

# Higher FPS for fast-moving content
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Analyze rapid movements in this sports video",
        types.Part.from_video_metadata(file_uri=myfile.uri, fps=5),
    ],
)
```

### Timeline / Scene Detection (MM:SS)

```python
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        """Create a timeline with timestamps:
        - Key events
        - Scene changes
        - Important moments
        Format: MM:SS - Description
        """,
        myfile,
    ],
)
```

### Transcription (Optional Visual Descriptions)

```python
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        """Transcribe with visual context:
        - Audio transcription
        - Visual descriptions of important moments
        - Timestamps for salient events
        """,
        myfile,
    ],
)
```

### Structured JSON Output (Schema-Guided)

```python
from pydantic import BaseModel
from typing import List
from google.genai import types as genai_types

class VideoEvent(BaseModel):
    timestamp: str  # MM:SS
    description: str
    category: str

class VideoAnalysis(BaseModel):
    summary: str
    events: List[VideoEvent]
    duration: str

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=["Analyze this video", myfile],
    config=genai_types.GenerateContentConfig(
        response_mime_type="application/json",
        response_schema=VideoAnalysis,
    ),
)
```

## Best Practices
- **Use the File API** for most videos (>20MB) and wait for processing to complete before analysis.
- **Reduce token usage** by clipping to the relevant segment and/or lowering FPS for static content.
- **Improve accuracy** by being explicit about the desired output (timestamps format, number of events, whether you want scene changes vs actions vs chapters).
- **Use `gemini-2.5-pro`** when you need highest-quality reasoning over complex, long, or visually dense videos.

## Error Handling

```python
import time

def upload_and_wait(client, file_path: str, max_wait_s: int = 300):
    myfile = client.files.upload(file=file_path)
    waited = 0

    while myfile.state.name == "PROCESSING" and waited < max_wait_s:
        time.sleep(5)
        waited += 5
        myfile = client.files.get(name=myfile.name)

    if myfile.state.name == "FAILED":
        raise ValueError(f"Video processing failed: {myfile.state.name}")
    if myfile.state.name == "PROCESSING":
        raise TimeoutError(f"Processing timeout after {max_wait_s}s")

    return myfile
```

Common issues:
- **Upload processing stuck**: wait and poll; fail after a max timeout.
- **YouTube errors**: verify the video is public and not age-restricted.
- **Rate limits**: retry with exponential backoff.
- **Incorrect timestamps**: re-prompt with strict “MM:SS” formatting and request fewer events.

## Limitations
- Long-video support is limited by model context and token budget (default vs low-res modes).
- YouTube analysis requires public videos; live streaming analysis is not supported.
- Very long videos may require chunking (clip by time range and process in segments).
- Multi-video comparison is limited (up to 10 videos per request on Gemini 2.5+).

## Version History
- **1.0.0** (2026-01-15): Initial release focused on Gemini video understanding (summaries, Q&A, timestamps, clipping, FPS control, YouTube, and structured outputs).


## Resources

- [Audio API Docs](https://ai.google.dev/gemini-api/docs/audio)
- [Image API Docs](https://ai.google.dev/gemini-api/docs/image-understanding)
- [Video API Docs](https://ai.google.dev/gemini-api/docs/video-understanding)
- [Document API Docs](https://ai.google.dev/gemini-api/docs/document-processing)
- [Image Gen Docs](https://ai.google.dev/gemini-api/docs/image-generation)
- [Get API Key](https://aistudio.google.com/apikey)
- [Pricing](https://ai.google.dev/pricing)

Overview

This skill enables robust video understanding using the Google Gemini API for summaries, Q&A, timestamped transcripts, scene/timeline detection, clipping, FPS control, multi-video comparison, and public YouTube analysis. It returns structured JSON with concise summaries, event timelines (MM:SS), transcripts (optional visual descriptions), and warnings about limitations. The skill is optimized for large files via the File API and supports inline bytes for small clips.

How this skill works

The skill uploads or references video content (local file or public YouTube URL), optionally waits for processing, and sends the video to a Gemini model configured for video understanding. Responses can be requested as structured JSON with a summary, a transcript that includes timestamps and visual context, and an events array of MM:SS timeline entries. You can control token usage and fidelity by clipping segments, lowering FPS, or selecting higher-capacity models for complex reasoning.

When to use it

  • Summarize long videos into chapters or key points
  • Ask timestamped questions using MM:SS (e.g., "01:15")
  • Produce transcripts with speaker labels and optional visual descriptions
  • Detect scene changes and build a timeline of events
  • Clip long footage or lower FPS to reduce tokens and focus analysis
  • Compare multiple videos or analyze public YouTube URLs directly

Best practices

  • Use the File API for videos >20MB and poll until processing completes
  • Clip to relevant time ranges and lower FPS for static content to save tokens
  • Specify exact output format (MM:SS timestamps, number of events, transcript options) to improve reliability
  • Prefer gemini-2.5-pro for complex, long, or visually dense videos when high-quality reasoning is needed
  • Validate YouTube URLs are public and not age-restricted before requesting analysis

Example use cases

  • Summarize a 90-minute lecture into 5 chapter-style key points with timestamps
  • Transcribe an interview with speaker labels and visual descriptions of important gestures
  • Detect scene boundaries and export a timeline of key actions for editing
  • Clip and reanalyze a 10–30 second highlight for faster iteration and lower cost
  • Compare up to 10 sports clips to identify differences in tactics or key plays

FAQ

What file formats and sizes are supported?

Common video formats (MP4, MOV, AVI, WebM, etc.). Use inline bytes for small files (<20MB); use the File API for larger videos.

How should I request timestamped answers?

Use MM:SS format (for example, "01:15") and explicitly ask for timeline entries or answers tied to those timestamps.