home / skills / bbeierle12 / skill-mcp-claude / particles-physics

particles-physics skill

/skills/particles-physics

This skill helps simulate realistic particle motion by applying gravity, wind, drag, attractors, turbulence, and collisions for dynamic visuals.

npx playbooks add skill bbeierle12/skill-mcp-claude --skill particles-physics

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
14.5 KB
---
name: particles-physics
description: Physics simulation for particle systems—forces (gravity, wind, drag), attractors/repulsors, velocity fields, turbulence, and collision. Use when particles need realistic or artistic motion, swarm behavior, or field-based animation.
---

# Particle Physics

Apply forces, fields, and constraints to create dynamic particle motion.

## Quick Start

```tsx
// Simple gravity + velocity
useFrame((_, delta) => {
  for (let i = 0; i < count; i++) {
    // Apply gravity
    velocities[i * 3 + 1] -= 9.8 * delta;
    
    // Update position
    positions[i * 3] += velocities[i * 3] * delta;
    positions[i * 3 + 1] += velocities[i * 3 + 1] * delta;
    positions[i * 3 + 2] += velocities[i * 3 + 2] * delta;
  }
  geometry.attributes.position.needsUpdate = true;
});
```

## Force Types

### Gravity (Constant Force)

```tsx
function applyGravity(
  velocities: Float32Array,
  count: number,
  gravity: THREE.Vector3,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    velocities[i * 3] += gravity.x * delta;
    velocities[i * 3 + 1] += gravity.y * delta;
    velocities[i * 3 + 2] += gravity.z * delta;
  }
}

// Usage
const gravity = new THREE.Vector3(0, -9.8, 0);
applyGravity(velocities, count, gravity, delta);
```

### Wind (Directional + Noise)

```tsx
function applyWind(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  direction: THREE.Vector3,
  strength: number,
  turbulence: number,
  time: number,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const x = positions[i * 3];
    const y = positions[i * 3 + 1];
    const z = positions[i * 3 + 2];
    
    // Base wind
    let wx = direction.x * strength;
    let wy = direction.y * strength;
    let wz = direction.z * strength;
    
    // Add turbulence (using simple noise approximation)
    const noise = Math.sin(x * 0.5 + time) * Math.cos(z * 0.5 + time);
    wx += noise * turbulence;
    wy += Math.sin(y * 0.3 + time * 1.3) * turbulence * 0.5;
    wz += Math.cos(x * 0.4 + time * 0.7) * turbulence;
    
    velocities[i * 3] += wx * delta;
    velocities[i * 3 + 1] += wy * delta;
    velocities[i * 3 + 2] += wz * delta;
  }
}
```

### Drag (Velocity Damping)

```tsx
function applyDrag(
  velocities: Float32Array,
  count: number,
  drag: number,  // 0-1, higher = more drag
  delta: number
) {
  const factor = 1 - drag * delta;
  
  for (let i = 0; i < count; i++) {
    velocities[i * 3] *= factor;
    velocities[i * 3 + 1] *= factor;
    velocities[i * 3 + 2] *= factor;
  }
}

// Quadratic drag (more realistic)
function applyQuadraticDrag(
  velocities: Float32Array,
  count: number,
  coefficient: number,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const vx = velocities[i * 3];
    const vy = velocities[i * 3 + 1];
    const vz = velocities[i * 3 + 2];
    
    const speed = Math.sqrt(vx * vx + vy * vy + vz * vz);
    if (speed > 0) {
      const dragForce = coefficient * speed * speed;
      const factor = Math.max(0, 1 - (dragForce * delta) / speed);
      
      velocities[i * 3] *= factor;
      velocities[i * 3 + 1] *= factor;
      velocities[i * 3 + 2] *= factor;
    }
  }
}
```

## Attractors & Repulsors

### Point Attractor

```tsx
function applyAttractor(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  attractorPos: THREE.Vector3,
  strength: number,  // Positive = attract, negative = repel
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const dx = attractorPos.x - positions[i * 3];
    const dy = attractorPos.y - positions[i * 3 + 1];
    const dz = attractorPos.z - positions[i * 3 + 2];
    
    const distSq = dx * dx + dy * dy + dz * dz;
    const dist = Math.sqrt(distSq);
    
    if (dist > 0.1) {  // Avoid division by zero
      // Inverse square falloff
      const force = strength / distSq;
      
      velocities[i * 3] += (dx / dist) * force * delta;
      velocities[i * 3 + 1] += (dy / dist) * force * delta;
      velocities[i * 3 + 2] += (dz / dist) * force * delta;
    }
  }
}
```

### Orbit Attractor

```tsx
function applyOrbitAttractor(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  center: THREE.Vector3,
  orbitStrength: number,
  pullStrength: number,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const dx = positions[i * 3] - center.x;
    const dy = positions[i * 3 + 1] - center.y;
    const dz = positions[i * 3 + 2] - center.z;
    
    const dist = Math.sqrt(dx * dx + dy * dy + dz * dz);
    
    if (dist > 0.1) {
      // Tangential force (orbit)
      const tx = -dz / dist;
      const tz = dx / dist;
      
      velocities[i * 3] += tx * orbitStrength * delta;
      velocities[i * 3 + 2] += tz * orbitStrength * delta;
      
      // Radial force (pull toward center)
      velocities[i * 3] -= (dx / dist) * pullStrength * delta;
      velocities[i * 3 + 1] -= (dy / dist) * pullStrength * delta;
      velocities[i * 3 + 2] -= (dz / dist) * pullStrength * delta;
    }
  }
}
```

### Multiple Attractors

```tsx
interface Attractor {
  position: THREE.Vector3;
  strength: number;
  radius: number;  // Influence radius
}

function applyAttractors(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  attractors: Attractor[],
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const px = positions[i * 3];
    const py = positions[i * 3 + 1];
    const pz = positions[i * 3 + 2];
    
    for (const attractor of attractors) {
      const dx = attractor.position.x - px;
      const dy = attractor.position.y - py;
      const dz = attractor.position.z - pz;
      
      const dist = Math.sqrt(dx * dx + dy * dy + dz * dz);
      
      if (dist > 0.1 && dist < attractor.radius) {
        // Smooth falloff within radius
        const falloff = 1 - dist / attractor.radius;
        const force = attractor.strength * falloff * falloff;
        
        velocities[i * 3] += (dx / dist) * force * delta;
        velocities[i * 3 + 1] += (dy / dist) * force * delta;
        velocities[i * 3 + 2] += (dz / dist) * force * delta;
      }
    }
  }
}
```

## Velocity Fields

### Curl Noise Field

```tsx
// In shader (GPU)
vec3 curlNoise(vec3 p) {
  const float e = 0.1;
  
  vec3 dx = vec3(e, 0.0, 0.0);
  vec3 dy = vec3(0.0, e, 0.0);
  vec3 dz = vec3(0.0, 0.0, e);
  
  float n1 = snoise(p + dy) - snoise(p - dy);
  float n2 = snoise(p + dz) - snoise(p - dz);
  float n3 = snoise(p + dx) - snoise(p - dx);
  float n4 = snoise(p + dz) - snoise(p - dz);
  float n5 = snoise(p + dx) - snoise(p - dx);
  float n6 = snoise(p + dy) - snoise(p - dy);
  
  return normalize(vec3(n1 - n2, n3 - n4, n5 - n6));
}

// Usage in vertex shader
vec3 velocity = curlNoise(position * 0.5 + uTime * 0.1);
position += velocity * delta;
```

### Flow Field (2D/3D Grid)

```tsx
class FlowField {
  private field: THREE.Vector3[];
  private resolution: number;
  private size: number;
  
  constructor(resolution: number, size: number) {
    this.resolution = resolution;
    this.size = size;
    this.field = [];
    
    for (let i = 0; i < resolution ** 3; i++) {
      this.field.push(new THREE.Vector3());
    }
  }
  
  // Generate field from noise
  generate(time: number, scale: number) {
    for (let x = 0; x < this.resolution; x++) {
      for (let y = 0; y < this.resolution; y++) {
        for (let z = 0; z < this.resolution; z++) {
          const index = x + y * this.resolution + z * this.resolution * this.resolution;
          
          // Use noise to generate flow direction
          const wx = x / this.resolution * scale;
          const wy = y / this.resolution * scale;
          const wz = z / this.resolution * scale;
          
          const angle1 = noise3D(wx, wy, wz + time) * Math.PI * 2;
          const angle2 = noise3D(wx + 100, wy, wz + time) * Math.PI * 2;
          
          this.field[index].set(
            Math.cos(angle1) * Math.cos(angle2),
            Math.sin(angle2),
            Math.sin(angle1) * Math.cos(angle2)
          );
        }
      }
    }
  }
  
  // Sample field at position
  sample(position: THREE.Vector3): THREE.Vector3 {
    const halfSize = this.size / 2;
    
    const x = Math.floor(((position.x + halfSize) / this.size) * this.resolution);
    const y = Math.floor(((position.y + halfSize) / this.size) * this.resolution);
    const z = Math.floor(((position.z + halfSize) / this.size) * this.resolution);
    
    const cx = Math.max(0, Math.min(this.resolution - 1, x));
    const cy = Math.max(0, Math.min(this.resolution - 1, y));
    const cz = Math.max(0, Math.min(this.resolution - 1, z));
    
    const index = cx + cy * this.resolution + cz * this.resolution * this.resolution;
    return this.field[index];
  }
}
```

### Vortex Field

```tsx
function applyVortex(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  center: THREE.Vector3,
  axis: THREE.Vector3,  // Normalized
  strength: number,
  falloff: number,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const dx = positions[i * 3] - center.x;
    const dy = positions[i * 3 + 1] - center.y;
    const dz = positions[i * 3 + 2] - center.z;
    
    // Project onto plane perpendicular to axis
    const dot = dx * axis.x + dy * axis.y + dz * axis.z;
    const px = dx - dot * axis.x;
    const py = dy - dot * axis.y;
    const pz = dz - dot * axis.z;
    
    const dist = Math.sqrt(px * px + py * py + pz * pz);
    
    if (dist > 0.1) {
      // Tangent direction (cross product with axis)
      const tx = axis.y * pz - axis.z * py;
      const ty = axis.z * px - axis.x * pz;
      const tz = axis.x * py - axis.y * px;
      
      const tLen = Math.sqrt(tx * tx + ty * ty + tz * tz);
      const force = strength * Math.exp(-dist * falloff);
      
      velocities[i * 3] += (tx / tLen) * force * delta;
      velocities[i * 3 + 1] += (ty / tLen) * force * delta;
      velocities[i * 3 + 2] += (tz / tLen) * force * delta;
    }
  }
}
```

## Turbulence

### Simplex-Based Turbulence

```glsl
// GPU turbulence in vertex shader
vec3 turbulence(vec3 p, float time, float scale, int octaves) {
  vec3 result = vec3(0.0);
  float amplitude = 1.0;
  float frequency = scale;
  
  for (int i = 0; i < octaves; i++) {
    vec3 samplePos = p * frequency + time;
    result.x += snoise(samplePos) * amplitude;
    result.y += snoise(samplePos + vec3(100.0)) * amplitude;
    result.z += snoise(samplePos + vec3(200.0)) * amplitude;
    
    frequency *= 2.0;
    amplitude *= 0.5;
  }
  
  return result;
}
```

### CPU Turbulence

```tsx
function applyTurbulence(
  velocities: Float32Array,
  positions: Float32Array,
  count: number,
  strength: number,
  scale: number,
  time: number,
  delta: number
) {
  for (let i = 0; i < count; i++) {
    const x = positions[i * 3] * scale;
    const y = positions[i * 3 + 1] * scale;
    const z = positions[i * 3 + 2] * scale;
    
    // Simple noise approximation
    const nx = Math.sin(x + time) * Math.cos(z + time * 0.7);
    const ny = Math.sin(y + time * 1.3) * Math.cos(x + time * 0.5);
    const nz = Math.sin(z + time * 0.9) * Math.cos(y + time * 1.1);
    
    velocities[i * 3] += nx * strength * delta;
    velocities[i * 3 + 1] += ny * strength * delta;
    velocities[i * 3 + 2] += nz * strength * delta;
  }
}
```

## Collision

### Plane Collision

```tsx
function collidePlane(
  positions: Float32Array,
  velocities: Float32Array,
  count: number,
  planeY: number,
  bounce: number  // 0-1
) {
  for (let i = 0; i < count; i++) {
    if (positions[i * 3 + 1] < planeY) {
      positions[i * 3 + 1] = planeY;
      velocities[i * 3 + 1] *= -bounce;
    }
  }
}
```

### Sphere Collision

```tsx
function collideSphere(
  positions: Float32Array,
  velocities: Float32Array,
  count: number,
  center: THREE.Vector3,
  radius: number,
  bounce: number,
  inside: boolean  // true = contain inside, false = repel from outside
) {
  for (let i = 0; i < count; i++) {
    const dx = positions[i * 3] - center.x;
    const dy = positions[i * 3 + 1] - center.y;
    const dz = positions[i * 3 + 2] - center.z;
    
    const dist = Math.sqrt(dx * dx + dy * dy + dz * dz);
    
    const collision = inside ? dist > radius : dist < radius;
    
    if (collision && dist > 0) {
      const nx = dx / dist;
      const ny = dy / dist;
      const nz = dz / dist;
      
      // Move to surface
      const targetDist = inside ? radius : radius;
      positions[i * 3] = center.x + nx * targetDist;
      positions[i * 3 + 1] = center.y + ny * targetDist;
      positions[i * 3 + 2] = center.z + nz * targetDist;
      
      // Reflect velocity
      const dot = velocities[i * 3] * nx + velocities[i * 3 + 1] * ny + velocities[i * 3 + 2] * nz;
      velocities[i * 3] = (velocities[i * 3] - 2 * dot * nx) * bounce;
      velocities[i * 3 + 1] = (velocities[i * 3 + 1] - 2 * dot * ny) * bounce;
      velocities[i * 3 + 2] = (velocities[i * 3 + 2] - 2 * dot * nz) * bounce;
    }
  }
}
```

## Integration Methods

### Euler (Simple)

```tsx
// Fastest, least accurate
position += velocity * delta;
velocity += acceleration * delta;
```

### Verlet (Better for constraints)

```tsx
// Store previous position
const newPos = position * 2 - prevPosition + acceleration * delta * delta;
prevPosition = position;
position = newPos;
```

### RK4 (Most accurate)

```tsx
// Runge-Kutta 4th order (for high precision)
function rk4(position: number, velocity: number, acceleration: (p: number, v: number) => number, dt: number) {
  const k1v = acceleration(position, velocity);
  const k1x = velocity;
  
  const k2v = acceleration(position + k1x * dt/2, velocity + k1v * dt/2);
  const k2x = velocity + k1v * dt/2;
  
  const k3v = acceleration(position + k2x * dt/2, velocity + k2v * dt/2);
  const k3x = velocity + k2v * dt/2;
  
  const k4v = acceleration(position + k3x * dt, velocity + k3v * dt);
  const k4x = velocity + k3v * dt;
  
  return {
    position: position + (k1x + 2*k2x + 2*k3x + k4x) * dt / 6,
    velocity: velocity + (k1v + 2*k2v + 2*k3v + k4v) * dt / 6
  };
}
```

## File Structure

```
particles-physics/
├── SKILL.md
├── references/
│   ├── forces.md             # All force types
│   └── integration.md        # Integration methods comparison
└── scripts/
    ├── forces/
    │   ├── gravity.ts        # Gravity implementations
    │   ├── attractors.ts     # Point/orbit attractors
    │   └── fields.ts         # Flow/velocity fields
    └── collision/
        ├── planes.ts         # Plane collision
        └── shapes.ts         # Sphere, box collision
```

## Reference

- `references/forces.md` — Complete force implementations
- `references/integration.md` — When to use which integration method

Overview

This skill implements a compact, practical particle physics toolkit for JavaScript-based simulations. It provides common forces (gravity, wind, drag), attractors/repulsors, velocity and vortex fields, turbulence generators, collision handlers, and multiple integration methods for both artistic and physically plausible motion. Designed for GPU or CPU workflows, it fits visual effects, interactive swarms, and field-driven animations.

How this skill works

The skill operates on typed arrays for positions and velocities and exposes modular functions you call each frame: apply forces to velocity, integrate positions, then run collision or constraint handlers. It supports CPU routines (gravity, wind, drag, attractors, turbulence, vortex, flow fields) and shader-ready patterns (curl noise, turbulence) for high-performance GPU implementations. Integration options include Euler, Verlet, and RK4 to trade off speed and accuracy.

When to use it

  • Creating realistic gravity, wind, or drag-driven particle motion in a scene.
  • Animating swarms, flocking, or orbiting behavior using attractors and orbit forces.
  • Generating organic flow-based motion with curl noise or 3D flow fields.
  • Adding turbulence or vortex effects for artistic distortions.
  • Handling simple collisions against planes or spheres in real time.

Best practices

  • Use typed Float32Array buffers for positions and velocities to minimize GC and maximize GPU upload performance.
  • Apply forces to velocities, then integrate positions in a single update loop to keep deterministic behavior.
  • Prefer Verlet for constraint-heavy systems, Euler for speed, and RK4 when high precision is required.
  • Clamp or guard against zero-distance when computing inverse-square or normalized forces to avoid instability.
  • Combine coarse CPU updates with shader-based curl noise for large particle counts to balance fidelity and performance.

Example use cases

  • Real-time smoke or dust driven by wind + turbulence in a WebGL scene.
  • Particle swarms attracted to multiple dynamic targets with smooth falloff radii.
  • Orbiting debris around a moving center using orbit attractors and drag damping.
  • Decorative vortex effects around a model using axis-aligned vortex fields.
  • Containment or rebound behavior using sphere/plane collisions for interactive sand or bubble effects.

FAQ

Should I run forces on the CPU or GPU?

Use the CPU for small to medium particle counts or when logic is complex; move repetitive per-particle noise and curl computations into shaders for large counts to improve performance.

How do I avoid numerical instability with strong forces?

Reduce timestep or switch to a higher-order integrator (Verlet or RK4), clamp force magnitudes, and ensure you avoid division by very small distances when normalizing.