home / skills / bbeierle12 / skill-mcp-claude / audio-analysis

audio-analysis skill

/skills/audio-analysis

This skill analyzes audio with FFT, waveform, and meter data to drive visuals and reactive effects.

npx playbooks add skill bbeierle12/skill-mcp-claude --skill audio-analysis

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
10.7 KB
---
name: audio-analysis
description: Audio analysis with Tone.js and Web Audio API including FFT, frequency data extraction, amplitude measurement, and waveform analysis. Use when extracting audio data for visualizations, beat detection, or any audio-reactive features.
---

# Audio Analysis

FFT, frequency extraction, and audio data analysis.

## Quick Start

```javascript
import * as Tone from 'tone';

// Create analyzer
const analyser = new Tone.Analyser('fft', 256);
const player = new Tone.Player('/audio/music.mp3');

player.connect(analyser);
player.toDestination();

// Get frequency data
const frequencyData = analyser.getValue(); // Float32Array
```

## Analyzer Types

### FFT Analyzer

```javascript
// FFT (Fast Fourier Transform) - frequency spectrum
const fftAnalyser = new Tone.Analyser({
  type: 'fft',
  size: 256,        // Must be power of 2: 32, 64, 128, 256, 512, 1024, 2048
  smoothing: 0.8    // 0-1, higher = smoother transitions
});

// Returns Float32Array of dB values (typically -100 to 0)
const fftData = fftAnalyser.getValue();
```

### Waveform Analyzer

```javascript
// Waveform - time domain data
const waveformAnalyser = new Tone.Analyser({
  type: 'waveform',
  size: 1024
});

// Returns Float32Array of amplitude values (-1 to 1)
const waveformData = waveformAnalyser.getValue();
```

### Meter (Volume Level)

```javascript
// Meter - overall volume level
const meter = new Tone.Meter({
  smoothing: 0.9,
  normalRange: false  // true for 0-1, false for dB
});

player.connect(meter);

// Get current level
const level = meter.getValue(); // dB or 0-1
```

### FFT Size Impact

| Size | Frequency Resolution | Time Resolution | Use Case |
|------|---------------------|-----------------|----------|
| 32 | Low | High | Beat detection |
| 128 | Medium | Medium | General visualization |
| 256 | Good | Good | Balanced (default) |
| 1024 | High | Low | Detailed spectrum |
| 2048 | Very High | Very Low | Audio analysis tools |

## Frequency Bands

### Manual Band Extraction

```javascript
const analyser = new Tone.Analyser('fft', 256);

function getFrequencyBands() {
  const data = analyser.getValue();
  const binCount = data.length;

  // Define frequency band ranges (approximate for 44.1kHz sample rate)
  // Each bin = (sampleRate / 2) / binCount Hz
  const bands = {
    sub: average(data, 0, Math.floor(binCount * 0.03)),      // ~20-60 Hz
    bass: average(data, Math.floor(binCount * 0.03), Math.floor(binCount * 0.08)),  // ~60-250 Hz
    lowMid: average(data, Math.floor(binCount * 0.08), Math.floor(binCount * 0.15)), // ~250-500 Hz
    mid: average(data, Math.floor(binCount * 0.15), Math.floor(binCount * 0.3)),     // ~500-2000 Hz
    highMid: average(data, Math.floor(binCount * 0.3), Math.floor(binCount * 0.5)),  // ~2000-4000 Hz
    high: average(data, Math.floor(binCount * 0.5), binCount)                         // ~4000+ Hz
  };

  return bands;
}

function average(data, start, end) {
  let sum = 0;
  for (let i = start; i < end; i++) {
    sum += data[i];
  }
  return sum / (end - start);
}
```

### Normalized Band Values

```javascript
function getNormalizedBands() {
  const bands = getFrequencyBands();

  // Convert dB to 0-1 range (assuming -100 to 0 dB range)
  const normalize = (db) => Math.max(0, Math.min(1, (db + 100) / 100));

  return {
    sub: normalize(bands.sub),
    bass: normalize(bands.bass),
    lowMid: normalize(bands.lowMid),
    mid: normalize(bands.mid),
    highMid: normalize(bands.highMid),
    high: normalize(bands.high)
  };
}
```

## Beat Detection

### Simple Peak Detection

```javascript
class BeatDetector {
  constructor(threshold = 0.7, decay = 0.98) {
    this.threshold = threshold;
    this.decay = decay;
    this.peak = 0;
    this.lastBeat = 0;
    this.minInterval = 200; // Minimum ms between beats
  }

  detect(analyser) {
    const data = analyser.getValue();

    // Focus on bass frequencies for beat detection
    const bassEnergy = this.getBassEnergy(data);

    // Decay the peak
    this.peak *= this.decay;

    // Update peak if higher
    if (bassEnergy > this.peak) {
      this.peak = bassEnergy;
    }

    // Detect beat
    const now = Date.now();
    const threshold = this.peak * this.threshold;

    if (bassEnergy > threshold && now - this.lastBeat > this.minInterval) {
      this.lastBeat = now;
      return true;
    }

    return false;
  }

  getBassEnergy(data) {
    // Average of low frequency bins
    let sum = 0;
    const bassRange = Math.floor(data.length * 0.1);
    for (let i = 0; i < bassRange; i++) {
      // Convert dB to linear and sum
      sum += Math.pow(10, data[i] / 20);
    }
    return sum / bassRange;
  }
}

// Usage
const beatDetector = new BeatDetector();
const analyser = new Tone.Analyser('fft', 256);

function update() {
  if (beatDetector.detect(analyser)) {
    console.log('Beat!');
    // Trigger visual effect
  }
  requestAnimationFrame(update);
}
```

### Energy History Beat Detection

```javascript
class EnergyBeatDetector {
  constructor(historySize = 43, sensitivity = 1.3) {
    this.history = new Array(historySize).fill(0);
    this.sensitivity = sensitivity;
    this.historyIndex = 0;
  }

  detect(analyser) {
    const data = analyser.getValue();
    const currentEnergy = this.calculateEnergy(data);

    // Calculate average energy from history
    const avgEnergy = this.history.reduce((a, b) => a + b) / this.history.length;

    // Update history
    this.history[this.historyIndex] = currentEnergy;
    this.historyIndex = (this.historyIndex + 1) % this.history.length;

    // Beat if current energy exceeds average by sensitivity factor
    return currentEnergy > avgEnergy * this.sensitivity;
  }

  calculateEnergy(data) {
    let energy = 0;
    for (let i = 0; i < data.length; i++) {
      const amplitude = Math.pow(10, data[i] / 20);
      energy += amplitude * amplitude;
    }
    return energy;
  }
}
```

## Amplitude Analysis

### RMS (Root Mean Square)

```javascript
function getRMS(analyser) {
  const waveform = analyser.getValue(); // Waveform analyzer

  let sum = 0;
  for (let i = 0; i < waveform.length; i++) {
    sum += waveform[i] * waveform[i];
  }

  return Math.sqrt(sum / waveform.length);
}
```

### Peak Amplitude

```javascript
function getPeakAmplitude(analyser) {
  const waveform = analyser.getValue();
  let peak = 0;

  for (let i = 0; i < waveform.length; i++) {
    const abs = Math.abs(waveform[i]);
    if (abs > peak) peak = abs;
  }

  return peak;
}
```

## Smoothing Techniques

### Exponential Smoothing

```javascript
class SmoothValue {
  constructor(smoothing = 0.9) {
    this.value = 0;
    this.smoothing = smoothing;
  }

  update(newValue) {
    this.value = this.smoothing * this.value + (1 - this.smoothing) * newValue;
    return this.value;
  }
}

// Usage
const smoothBass = new SmoothValue(0.85);
const bassLevel = smoothBass.update(rawBassLevel);
```

### Moving Average

```javascript
class MovingAverage {
  constructor(size = 10) {
    this.size = size;
    this.values = [];
  }

  update(value) {
    this.values.push(value);
    if (this.values.length > this.size) {
      this.values.shift();
    }
    return this.values.reduce((a, b) => a + b) / this.values.length;
  }
}
```

## Complete Analysis System

```javascript
class AudioAnalysisSystem {
  constructor() {
    this.fftAnalyser = new Tone.Analyser('fft', 256);
    this.waveformAnalyser = new Tone.Analyser('waveform', 1024);
    this.meter = new Tone.Meter({ smoothing: 0.9 });

    this.smoothers = {
      bass: new SmoothValue(0.85),
      mid: new SmoothValue(0.9),
      high: new SmoothValue(0.9),
      volume: new SmoothValue(0.95)
    };

    this.beatDetector = new BeatDetector();
  }

  connect(source) {
    source.connect(this.fftAnalyser);
    source.connect(this.waveformAnalyser);
    source.connect(this.meter);
    source.toDestination();
  }

  getAnalysis() {
    const fft = this.fftAnalyser.getValue();
    const waveform = this.waveformAnalyser.getValue();
    const volume = this.meter.getValue();

    const bands = this.extractBands(fft);

    return {
      // Raw data
      fft,
      waveform,

      // Smoothed bands (0-1)
      bass: this.smoothers.bass.update(bands.bass),
      mid: this.smoothers.mid.update(bands.mid),
      high: this.smoothers.high.update(bands.high),

      // Volume
      volume: this.smoothers.volume.update(this.normalizeDb(volume)),
      volumeDb: volume,

      // Beat
      isBeat: this.beatDetector.detect(this.fftAnalyser),

      // Waveform metrics
      rms: this.getRMS(waveform),
      peak: this.getPeak(waveform)
    };
  }

  extractBands(fft) {
    const len = fft.length;
    return {
      bass: this.normalizeDb(this.avgRange(fft, 0, len * 0.1)),
      mid: this.normalizeDb(this.avgRange(fft, len * 0.1, len * 0.5)),
      high: this.normalizeDb(this.avgRange(fft, len * 0.5, len))
    };
  }

  avgRange(data, start, end) {
    let sum = 0;
    const s = Math.floor(start);
    const e = Math.floor(end);
    for (let i = s; i < e; i++) sum += data[i];
    return sum / (e - s);
  }

  normalizeDb(db) {
    return Math.max(0, Math.min(1, (db + 100) / 100));
  }

  getRMS(waveform) {
    let sum = 0;
    for (let i = 0; i < waveform.length; i++) {
      sum += waveform[i] * waveform[i];
    }
    return Math.sqrt(sum / waveform.length);
  }

  getPeak(waveform) {
    let peak = 0;
    for (let i = 0; i < waveform.length; i++) {
      const abs = Math.abs(waveform[i]);
      if (abs > peak) peak = abs;
    }
    return peak;
  }

  dispose() {
    this.fftAnalyser.dispose();
    this.waveformAnalyser.dispose();
    this.meter.dispose();
  }
}
```

## Temporal Collapse Usage

```javascript
class TemporalAudioAnalysis extends AudioAnalysisSystem {
  getCountdownData() {
    const analysis = this.getAnalysis();

    return {
      // For bloom intensity
      glowIntensity: analysis.bass * 0.5 + analysis.volume * 0.5,

      // For particle speed
      particleEnergy: analysis.mid,

      // For chromatic aberration
      distortion: analysis.high * 0.3,

      // For digit pulse
      pulse: analysis.isBeat ? 1 : 0,

      // For background intensity
      ambientLevel: analysis.rms
    };
  }
}
```

## Performance Tips

```javascript
// 1. Use appropriate FFT size
const analyser = new Tone.Analyser('fft', 128); // Smaller = faster

// 2. Don't analyze every frame if not needed
let frameCount = 0;
function update() {
  if (frameCount % 2 === 0) { // Every other frame
    const data = analyser.getValue();
  }
  frameCount++;
}

// 3. Reuse arrays
const dataArray = new Float32Array(256);
analyser.getValue(dataArray); // Pass in array to avoid allocation

// 4. Use smoothing to reduce visual jitter
const smoothedValue = smoother.update(rawValue);
```

## Reference

- See `audio-playback` for loading and playing audio
- See `audio-reactive` for connecting analysis to visuals
- See `audio-router` for audio domain routing

Overview

This skill provides audio analysis utilities built with Tone.js and the Web Audio API for FFT, waveform, amplitude, and beat detection. It packages practical patterns for extracting frequency bands, RMS and peak amplitude, smoothing values, and simple beat detectors. Use it to feed visualizations, drive audio-reactive effects, or compute analytics from live or file-based audio.

How this skill works

The skill creates Tone.Analyser and Tone.Meter instances to collect FFT (frequency-domain) and waveform (time-domain) buffers and volume readings. It computes band averages, normalizes dB to 0–1, and exposes RMS and peak amplitude functions. Optional beat detectors use bass energy, peak-tracking, or an energy-history method; smoothing utilities (exponential and moving average) stabilize outputs for visuals.

When to use it

  • Building audio visualizers (spectrums, waveforms, particle systems)
  • Driving audio-reactive UI or game effects
  • Implementing beat detection for synchronized events
  • Measuring loudness or extracting frequency bands for analysis
  • Optimizing real-time audio pipelines for performance

Best practices

  • Choose FFT size based on resolution vs latency (32–2048 powers of two)
  • Focus beat detection on low-frequency bins and enforce a minimum interval between beats
  • Normalize dB values to 0–1 for consistent thresholds across tracks
  • Reuse Float32Array buffers and avoid per-frame allocations to reduce GC pressure
  • Apply smoothing (exponential or moving average) to reduce jitter in visuals

Example use cases

  • Real-time spectrum visualizer using Tone.Analyser('fft') to render bars
  • Beat-triggered particle bursts using a bass-focused BeatDetector
  • Live RMS and peak meters for streaming or recording interfaces
  • Normalized frequency bands feeding shader uniforms for post-processing effects
  • Energy-history detector for tempo estimation and beat-aligned animations

FAQ

What FFT size should I use?

Smaller sizes (32–128) give faster response and suit beat detection; larger sizes (1024–2048) give finer frequency detail for analysis tools.

How do I avoid noisy visual output?

Use smoothing (exponential or moving average), normalize dB ranges to 0–1, and optionally downsample analysis calls (e.g., every other animation frame).