home / skills / basher83 / agent-auditor / crawl4ai
This skill enables efficient web crawling and structured data extraction using Crawl4AI, handling JavaScript-heavy pages and multi URL pipelines for rapid data
npx playbooks add skill basher83/agent-auditor --skill crawl4aiReview the files below or copy the command above to add this skill to your agents.
---
name: crawl4ai
description: This skill should be used when users need to scrape websites, extract structured data, handle JavaScript-heavy pages, crawl multiple URLs, or build automated web data pipelines. Includes optimized extraction patterns with schema generation for efficient, LLM-free extraction.
---
# Crawl4AI
## Overview
This skill provides comprehensive support for web crawling and data extraction using the Crawl4AI library, including the complete SDK reference, ready-to-use scripts for common patterns, and optimized workflows for efficient data extraction.
## Quick Start
### Installation Check
```bash
# Verify installation
crawl4ai-doctor
# If issues, run setup
crawl4ai-setup
```
### Basic First Crawl
```python
import asyncio
from crawl4ai import AsyncWebCrawler
async def main():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://example.com")
print(result.markdown[:500]) # First 500 chars
asyncio.run(main())
```
### Using Provided Scripts
```bash
# Simple markdown extraction
python scripts/basic_crawler.py https://example.com
# Batch processing
python scripts/batch_crawler.py urls.txt
# Data extraction
python scripts/extraction_pipeline.py --generate-schema https://shop.com "extract products"
```
## Core Crawling Fundamentals
### 1. Basic Crawling
Understanding the core components for any crawl:
```python
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig
# Browser configuration (controls browser behavior)
browser_config = BrowserConfig(
headless=True, # Run without GUI
viewport_width=1920,
viewport_height=1080,
user_agent="custom-agent" # Optional custom user agent
)
# Crawler configuration (controls crawl behavior)
crawler_config = CrawlerRunConfig(
page_timeout=30000, # 30 seconds timeout
screenshot=True, # Take screenshot
remove_overlay_elements=True # Remove popups/overlays
)
# Execute crawl with arun()
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://example.com",
config=crawler_config
)
# CrawlResult contains everything
print(f"Success: {result.success}")
print(f"HTML length: {len(result.html)}")
print(f"Markdown length: {len(result.markdown)}")
print(f"Links found: {len(result.links)}")
```
### 2. Configuration Deep Dive
**BrowserConfig** - Controls the browser instance:
- `headless`: Run with/without GUI
- `viewport_width/height`: Browser dimensions
- `user_agent`: Custom user agent string
- `cookies`: Pre-set cookies
- `headers`: Custom HTTP headers
**CrawlerRunConfig** - Controls each crawl:
- `page_timeout`: Maximum page load/JS execution time (ms)
- `wait_for`: CSS selector or JS condition to wait for (optional)
- `cache_mode`: Control caching behavior
- `js_code`: Execute custom JavaScript
- `screenshot`: Capture page screenshot
- `session_id`: Persist session across crawls
### 3. Content Processing
Basic content operations available in every crawl:
```python
result = await crawler.arun(url)
# Access extracted content
markdown = result.markdown # Clean markdown
html = result.html # Raw HTML
text = result.cleaned_html # Cleaned HTML
# Media and links
images = result.media["images"]
videos = result.media["videos"]
internal_links = result.links["internal"]
external_links = result.links["external"]
# Metadata
title = result.metadata["title"]
description = result.metadata["description"]
```
## Markdown Generation (Primary Use Case)
### 1. Basic Markdown Extraction
Crawl4AI excels at generating clean, well-formatted markdown:
```python
# Simple markdown extraction
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://docs.example.com")
# High-quality markdown ready for LLMs
with open("documentation.md", "w") as f:
f.write(result.markdown)
```
### 2. Fit Markdown (Content Filtering)
Use content filters to get only relevant content:
```python
from crawl4ai.content_filter_strategy import PruningContentFilter, BM25ContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
# Option 1: Pruning filter (removes low-quality content)
pruning_filter = PruningContentFilter(threshold=0.4, threshold_type="fixed")
# Option 2: BM25 filter (relevance-based filtering)
bm25_filter = BM25ContentFilter(user_query="machine learning tutorials", bm25_threshold=1.0)
md_generator = DefaultMarkdownGenerator(content_filter=bm25_filter)
config = CrawlerRunConfig(markdown_generator=md_generator)
result = await crawler.arun(url, config=config)
# Access filtered content
print(result.markdown.fit_markdown) # Filtered markdown
print(result.markdown.raw_markdown) # Original markdown
```
### 3. Markdown Customization
Control markdown generation with options:
```python
config = CrawlerRunConfig(
# Exclude elements from markdown
excluded_tags=["nav", "footer", "aside"],
# Focus on specific CSS selector
css_selector=".main-content",
# Clean up formatting
remove_forms=True,
remove_overlay_elements=True,
# Control link handling
exclude_external_links=True,
exclude_internal_links=False
)
# Custom markdown generation
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
generator = DefaultMarkdownGenerator(
options={
"ignore_links": False,
"ignore_images": False,
"image_alt_text": True
}
)
```
## Data Extraction
### 1. Schema-Based Extraction (Most Efficient)
For repetitive patterns, generate schema once and reuse:
```bash
# Step 1: Generate schema with LLM (one-time)
python scripts/extraction_pipeline.py --generate-schema https://shop.com "extract products"
# Step 2: Use schema for fast extraction (no LLM)
python scripts/extraction_pipeline.py --use-schema https://shop.com generated_schema.json
```
### 2. Manual CSS/JSON Extraction
When you know the structure:
```python
schema = {
"name": "articles",
"baseSelector": "article.post",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "date", "selector": ".date", "type": "text"},
{"name": "content", "selector": ".content", "type": "text"}
]
}
extraction_strategy = JsonCssExtractionStrategy(schema=schema)
config = CrawlerRunConfig(extraction_strategy=extraction_strategy)
```
### 3. LLM-Based Extraction
For complex or irregular content:
```python
extraction_strategy = LLMExtractionStrategy(
provider="openai/gpt-4o-mini",
instruction="Extract key financial metrics and quarterly trends"
)
```
## Advanced Patterns
### 1. Deep Crawling
Discover and crawl links from a page:
```python
# Basic link discovery
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url)
# Extract and process discovered links
internal_links = result.links.get("internal", [])
external_links = result.links.get("external", [])
# Crawl discovered internal links
for link in internal_links:
if "/blog/" in link and "/tag/" not in link: # Filter links
sub_result = await crawler.arun(link)
# Process sub-page
# For advanced deep crawling, consider using URL seeding patterns
# or custom crawl strategies (see complete-sdk-reference.md)
```
### 2. Batch & Multi-URL Processing
Efficiently crawl multiple URLs:
```python
urls = ["https://site1.com", "https://site2.com", "https://site3.com"]
async with AsyncWebCrawler() as crawler:
# Concurrent crawling with arun_many()
results = await crawler.arun_many(
urls=urls,
config=crawler_config,
max_concurrent=5 # Control concurrency
)
for result in results:
if result.success:
print(f"✅ {result.url}: {len(result.markdown)} chars")
```
### 3. Session & Authentication
Handle login-required content:
```python
# First crawl - establish session and login
login_config = CrawlerRunConfig(
session_id="user_session",
js_code="""
document.querySelector('#username').value = 'myuser';
document.querySelector('#password').value = 'mypass';
document.querySelector('#submit').click();
""",
wait_for="css:.dashboard" # Wait for post-login element
)
await crawler.arun("https://site.com/login", config=login_config)
# Subsequent crawls - reuse session
config = CrawlerRunConfig(session_id="user_session")
await crawler.arun("https://site.com/protected-content", config=config)
```
### 4. Dynamic Content Handling
For JavaScript-heavy sites:
```python
config = CrawlerRunConfig(
# Wait for dynamic content
wait_for="css:.ajax-content",
# Execute JavaScript
js_code="""
// Scroll to load content
window.scrollTo(0, document.body.scrollHeight);
// Click load more button
document.querySelector('.load-more')?.click();
""",
# Note: For virtual scrolling (Twitter/Instagram-style),
# use virtual_scroll_config parameter (see docs)
# Extended timeout for slow loading
page_timeout=60000
)
```
### 5. Anti-Detection & Proxies
Avoid bot detection:
```python
# Proxy configuration
browser_config = BrowserConfig(
headless=True,
proxy_config={
"server": "http://proxy.server:8080",
"username": "user",
"password": "pass"
}
)
# For stealth/undetected browsing, consider:
# - Rotating user agents via user_agent parameter
# - Using different viewport sizes
# - Adding delays between requests
# Rate limiting
import asyncio
for url in urls:
result = await crawler.arun(url)
await asyncio.sleep(2) # Delay between requests
```
## Common Use Cases
### Documentation to Markdown
```python
# Convert entire documentation site to clean markdown
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://docs.example.com")
# Save as markdown for LLM consumption
with open("docs.md", "w") as f:
f.write(result.markdown)
```
### E-commerce Product Monitoring
```python
# Generate schema once for product pages
# Then monitor prices/availability without LLM costs
schema = load_json("product_schema.json")
products = await crawler.arun_many(product_urls,
config=CrawlerRunConfig(extraction_strategy=JsonCssExtractionStrategy(schema)))
```
### News Aggregation
```python
# Crawl multiple news sources concurrently
news_urls = ["https://news1.com", "https://news2.com", "https://news3.com"]
results = await crawler.arun_many(news_urls, max_concurrent=5)
# Extract articles with Fit Markdown
for result in results:
if result.success:
# Get only relevant content
article = result.fit_markdown
```
### Research & Data Collection
```python
# Academic paper collection with focused extraction
config = CrawlerRunConfig(
fit_markdown=True,
fit_markdown_options={
"query": "machine learning transformers",
"max_tokens": 10000
}
)
```
## Resources
### scripts/
- **extraction_pipeline.py** - Three extraction approaches with schema generation
- **basic_crawler.py** - Simple markdown extraction with screenshots
- **batch_crawler.py** - Multi-URL concurrent processing
### references/
- **complete-sdk-reference.md** - Complete SDK documentation (23K words) with all parameters, methods, and advanced features
### Example Code Repository
The Crawl4AI repository includes extensive examples in `docs/examples/`:
#### Core Examples
- **quickstart.py** - Comprehensive starter with all basic patterns:
- Simple crawling, JavaScript execution, CSS selectors
- Content filtering, link analysis, media handling
- LLM extraction, CSS extraction, dynamic content
- Browser comparison, SSL certificates
#### Specialized Examples
- **amazon_product_extraction_*.py** - Three approaches for e-commerce scraping
- **extraction_strategies_examples.py** - All extraction strategies demonstrated
- **deepcrawl_example.py** - Advanced deep crawling patterns
- **crypto_analysis_example.py** - Complex data extraction with analysis
- **parallel_execution_example.py** - High-performance concurrent crawling
- **session_management_example.py** - Authentication and session handling
- **markdown_generation_example.py** - Advanced markdown customization
- **hooks_example.py** - Custom hooks for crawl lifecycle events
- **proxy_rotation_example.py** - Proxy management and rotation
- **router_example.py** - Request routing and URL patterns
#### Advanced Patterns
- **adaptive_crawling/** - Intelligent crawling strategies
- **c4a_script/** - C4A script examples
- **docker_*.py** - Docker deployment patterns
To explore examples:
```python
# The examples are located in your Crawl4AI installation:
# Look in: docs/examples/ directory
# Start with quickstart.py for comprehensive patterns
# It includes: simple crawl, JS execution, CSS selectors,
# content filtering, LLM extraction, dynamic pages, and more
# For specific use cases:
# - E-commerce: amazon_product_extraction_*.py
# - High performance: parallel_execution_example.py
# - Authentication: session_management_example.py
# - Deep crawling: deepcrawl_example.py
# Run any example directly:
# python docs/examples/quickstart.py
```
## Best Practices
1. **Start with basic crawling** - Understand BrowserConfig, CrawlerRunConfig, and arun() before moving to advanced features
2. **Use markdown generation** for documentation and content - Crawl4AI excels at clean markdown extraction
3. **Try schema generation first** for structured data - 10-100x more efficient than LLM extraction
4. **Enable caching during development** - `cache_mode=CacheMode.ENABLED` to avoid repeated requests
5. **Set appropriate timeouts** - 30s for normal sites, 60s+ for JavaScript-heavy sites
6. **Respect rate limits** - Use delays and `max_concurrent` parameter
7. **Reuse sessions** for authenticated content instead of re-logging
## Troubleshooting
**JavaScript not loading:**
```python
config = CrawlerRunConfig(
wait_for="css:.dynamic-content", # Wait for specific element
page_timeout=60000 # Increase timeout
)
```
**Bot detection issues:**
```python
browser_config = BrowserConfig(
headless=False, # Sometimes visible browsing helps
viewport_width=1920,
viewport_height=1080,
user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
)
# Add delays between requests
await asyncio.sleep(random.uniform(2, 5))
```
**Content extraction problems:**
```python
# Debug what's being extracted
result = await crawler.arun(url)
print(f"HTML length: {len(result.html)}")
print(f"Markdown length: {len(result.markdown)}")
print(f"Links found: {len(result.links)}")
# Try different wait strategies
config = CrawlerRunConfig(
wait_for="js:document.querySelector('.content') !== null"
)
```
**Session/auth issues:**
```python
# Verify session is maintained
config = CrawlerRunConfig(session_id="test_session")
result = await crawler.arun(url, config=config)
print(f"Session ID: {result.session_id}")
print(f"Cookies: {result.cookies}")
```
For more details on any topic, refer to `references/complete-sdk-reference.md` which contains comprehensive documentation of all features, parameters, and advanced usage patterns.
This skill provides a production-ready web crawling and extraction toolkit based on Crawl4AI. It helps you scrape static and JavaScript-heavy pages, generate clean markdown, and extract structured data using reusable schemas for fast, LLM-free pipelines. The skill includes scripts and SDK patterns for batch crawling, session handling, and advanced crawl strategies.
The skill runs a headless browser to load pages, execute JavaScript, and capture HTML, markdown, media, and metadata. It offers configurable BrowserConfig and CrawlerRunConfig objects to control timeouts, selectors, JS hooks, screenshots, and session persistence. For structured extraction you can generate a reusable schema or supply CSS/JSON extraction definitions; the schema-based approach enables fast, deterministic extraction without LLM calls.
Can this handle JavaScript-heavy pages and infinite scroll?
Yes — use wait_for, js_code to run scrolling or clicks, and increase page_timeout; virtual_scroll_config supports complex virtual scrolling patterns.
When should I generate a schema instead of using an LLM?
Generate a schema when pages follow a repeatable structure. A schema yields much faster, cheaper extraction for recurring runs and eliminates LLM costs.