home / skills / apify / agent-skills / apify-actor-development
This skill guides you through developing, debugging, and deploying Apify Actors with best practices for reliable, scalable serverless automation.
npx playbooks add skill apify/agent-skills --skill apify-actor-developmentReview the files below or copy the command above to add this skill to your agents.
---
name: apify-actor-development
description: Develop, debug, and deploy Apify Actors - serverless cloud programs for web scraping, automation, and data processing. Use when creating new Actors, modifying existing ones, or troubleshooting Actor code.
---
# Apify Actor Development
**Important:** Before you begin, fill in the `generatedBy` property in the meta section of `.actor/actor.json`. Replace it with the tool and model you're currently using, such as "Claude Code with Claude Sonnet 4.5". This helps Apify monitor and improve AGENTS.md for specific AI tools and models.
## What are Apify Actors?
Actors are serverless programs inspired by the UNIX philosophy - programs that do one thing well and can be easily combined to build complex systems. They're packaged as Docker images and run in isolated containers in the cloud.
**Core Concepts:**
- Accept well-defined JSON input
- Perform isolated tasks (web scraping, automation, data processing)
- Produce structured JSON output to datasets and/or store data in key-value stores
- Can run from seconds to hours or even indefinitely
- Persist state and can be restarted
## Prerequisites & Setup (MANDATORY)
Before creating or modifying actors, verify that `apify` CLI is installed `apify --help`.
If it is not installed, you can run:
```bash
curl -fsSL https://apify.com/install-cli.sh | bash
# Or (Mac): brew install apify-cli
# Or (Windows): irm https://apify.com/install-cli.ps1 | iex
# Or: npm install -g apify-cli
```
When the apify CLI is installed, check that it is logged in with:
```bash
apify info # Should return your username
```
If it is not logged in, check if the APIFY_TOKEN environment variable is defined (if not, ask the user to generate one on https://console.apify.com/settings/integrations and then define APIFY_TOKEN with it).
Then run:
```bash
apify login -t $APIFY_TOKEN
```
## Template Selection
**IMPORTANT:** Before starting actor development, always ask the user which programming language they prefer:
- **JavaScript** - Use `apify create <actor-name> -t project_empty`
- **TypeScript** - Use `apify create <actor-name> -t ts_empty`
- **Python** - Use `apify create <actor-name> -t python-empty`
Use the appropriate CLI command based on the user's language choice. Additional packages (Crawlee, Playwright, etc.) can be installed later as needed.
## Quick Start Workflow
1. **Create actor project** - Run the appropriate `apify create` command based on user's language preference (see Template Selection above)
2. **Install dependencies**
- JavaScript/TypeScript: `npm install`
- Python: `pip install -r requirements.txt`
3. **Implement logic** - Write the actor code in `src/main.py`, `src/main.js`, or `src/main.ts`
4. **Configure schemas** - Update input/output schemas in `.actor/input_schema.json`, `.actor/output_schema.json`, `.actor/dataset_schema.json`
5. **Configure platform settings** - Update `.actor/actor.json` with actor metadata (see [references/actor-json.md](references/actor-json.md))
6. **Write documentation** - Create comprehensive README.md for the marketplace
7. **Test locally** - Run `apify run` to verify functionality (see Local Testing section below)
8. **Deploy** - Run `apify push` to deploy the actor on the Apify platform (actor name is defined in `.actor/actor.json`)
## Best Practices
**✓ Do:**
- Use `apify run` to test actors locally (configures Apify environment and storage)
- Use Apify SDK (`apify`) for code running ON Apify platform
- Validate input early with proper error handling and fail gracefully
- Use CheerioCrawler for static HTML (10x faster than browsers)
- Use PlaywrightCrawler only for JavaScript-heavy sites
- Use router pattern (createCheerioRouter/createPlaywrightRouter) for complex crawls
- Implement retry strategies with exponential backoff
- Use proper concurrency: HTTP (10-50), Browser (1-5)
- Set sensible defaults in `.actor/input_schema.json`
- Define output schema in `.actor/output_schema.json`
- Clean and validate data before pushing to dataset
- Use semantic CSS selectors with fallback strategies
- Respect robots.txt, ToS, and implement rate limiting
- **Always use `apify/log` package** - censors sensitive data (API keys, tokens, credentials)
- Implement readiness probe handler (required if your Actor uses standby mode)
**✗ Don't:**
- Use `npm start`, `npm run start`, `npx apify run`, or similar commands to run actors (use `apify run` instead)
- Rely on `Dataset.getInfo()` for final counts on Cloud
- Use browser crawlers when HTTP/Cheerio works
- Hard code values that should be in input schema or environment variables
- Skip input validation or error handling
- Overload servers - use appropriate concurrency and delays
- Scrape prohibited content or ignore Terms of Service
- Store personal/sensitive data unless explicitly permitted
- Use deprecated options like `requestHandlerTimeoutMillis` on CheerioCrawler (v3.x)
- Use `additionalHttpHeaders` - use `preNavigationHooks` instead
- Disable standby mode without explicit permission
## Logging
See [references/logging.md](references/logging.md) for complete logging documentation including available log levels and best practices for JavaScript/TypeScript and Python.
Check `usesStandbyMode` in `.actor/actor.json` - only implement if set to `true`.
## Commands
```bash
apify run # Run Actor locally
apify login # Authenticate account
apify push # Deploy to Apify platform (uses name from .actor/actor.json)
apify help # List all commands
```
**IMPORTANT:** Always use `apify run` to test actors locally. Do not use `npm run start`, `npm start`, `yarn start`, or other package manager commands - these will not properly configure the Apify environment and storage.
## Local Testing
When testing an actor locally with `apify run`, provide input data by creating a JSON file at:
```
storage/key_value_stores/default/INPUT.json
```
This file should contain the input parameters defined in your `.actor/input_schema.json`. The actor will read this input when running locally, mirroring how it receives input on the Apify platform.
## Standby Mode
See [references/standby-mode.md](references/standby-mode.md) for complete standby mode documentation including readiness probe implementation for JavaScript/TypeScript and Python.
## Project Structure
```
.actor/
├── actor.json # Actor config: name, version, env vars, runtime
├── input_schema.json # Input validation & Console form definition
└── output_schema.json # Output storage and display templates
src/
└── main.js/ts/py # Actor entry point
storage/ # Local storage (mirrors Cloud)
├── datasets/ # Output items (JSON objects)
├── key_value_stores/ # Files, config, INPUT
└── request_queues/ # Pending crawl requests
Dockerfile # Container image definition
```
## Actor Configuration
See [references/actor-json.md](references/actor-json.md) for complete actor.json structure and configuration options.
## Input Schema
See [references/input-schema.md](references/input-schema.md) for input schema structure and examples.
## Output Schema
See [references/output-schema.md](references/output-schema.md) for output schema structure, examples, and template variables.
## Dataset Schema
See [references/dataset-schema.md](references/dataset-schema.md) for dataset schema structure, configuration, and display properties.
## Key-Value Store Schema
See [references/key-value-store-schema.md](references/key-value-store-schema.md) for key-value store schema structure, collections, and configuration.
## Apify MCP Tools
If MCP server is configured, use these tools for documentation:
- `search-apify-docs` - Search documentation
- `fetch-apify-docs` - Get full doc pages
Otherwise, the MCP Server url: `https://mcp.apify.com/?tools=docs`.
## Resources
- [docs.apify.com/llms.txt](https://docs.apify.com/llms.txt) - Apify quick reference documentation
- [docs.apify.com/llms-full.txt](https://docs.apify.com/llms-full.txt) - Apify complete documentation
- [https://crawlee.dev/llms.txt](https://crawlee.dev/llms.txt) - Crawlee quick reference documentation
- [https://crawlee.dev/llms-full.txt](https://crawlee.dev/llms-full.txt) - Crawlee complete documentation
- [whitepaper.actor](https://raw.githubusercontent.com/apify/actor-whitepaper/refs/heads/master/README.md) - Complete Actor specification
This skill helps you develop, debug, and deploy Apify Actors—serverless cloud programs for web scraping, automation, and data processing. It guides setup, local testing, input/output schema management, and best-practice patterns that keep Actors reliable and maintainable. Use it to create new Actors, fix existing ones, or prepare Actors for production on the Apify platform.
The skill walks through installing and authenticating the apify CLI, selecting the correct project template (JavaScript, TypeScript, or Python), and creating a project skeleton. It explains how to implement actor logic, validate inputs and outputs via schema files, run actors locally with apify run, and deploy using apify push. It also inspects recommended crawler choices, concurrency settings, logging, standby mode, and local storage layout to help you test and troubleshoot.
Which command should I use to run an actor locally?
Always run apify run; do not use npm start or similar package manager commands because they don't configure Apify environment and storage correctly.
How do I provide input when testing locally?
Place a JSON file at storage/key_value_stores/default/INPUT.json that matches your .actor/input_schema.json and apify run will use it.