home / skills / anthropics / knowledge-work-plugins / scvi-tools

scvi-tools skill

/bio-research/skills/scvi-tools

This skill guides deep learning-based single-cell analysis with scvi-tools enabling data integration, multi-modal workflows, and reference mapping.

npx playbooks add skill anthropics/knowledge-work-plugins --skill scvi-tools

Review the files below or copy the command above to add this skill to your agents.

Files (22)
SKILL.md
7.2 KB
---
name: scvi-tools
description: Deep learning for single-cell analysis using scvi-tools. This skill should be used when users need (1) data integration and batch correction with scVI/scANVI, (2) ATAC-seq analysis with PeakVI, (3) CITE-seq multi-modal analysis with totalVI, (4) multiome RNA+ATAC analysis with MultiVI, (5) spatial transcriptomics deconvolution with DestVI, (6) label transfer and reference mapping with scANVI/scArches, (7) RNA velocity with veloVI, or (8) any deep learning-based single-cell method. Triggers include mentions of scVI, scANVI, totalVI, PeakVI, MultiVI, DestVI, veloVI, sysVI, scArches, variational autoencoder, VAE, batch correction, data integration, multi-modal, CITE-seq, multiome, reference mapping, latent space.
---

# scvi-tools Deep Learning Skill

This skill provides guidance for deep learning-based single-cell analysis using scvi-tools, the leading framework for probabilistic models in single-cell genomics.

## How to Use This Skill

1. Identify the appropriate workflow from the model/workflow tables below
2. Read the corresponding reference file for detailed steps and code
3. Use scripts in `scripts/` to avoid rewriting common code
4. For installation or GPU issues, consult `references/environment_setup.md`
5. For debugging, consult `references/troubleshooting.md`

## When to Use This Skill

- When scvi-tools, scVI, scANVI, or related models are mentioned
- When deep learning-based batch correction or integration is needed
- When working with multi-modal data (CITE-seq, multiome)
- When reference mapping or label transfer is required
- When analyzing ATAC-seq or spatial transcriptomics data
- When learning latent representations of single-cell data

## Model Selection Guide

| Data Type | Model | Primary Use Case |
|-----------|-------|------------------|
| scRNA-seq | **scVI** | Unsupervised integration, DE, imputation |
| scRNA-seq + labels | **scANVI** | Label transfer, semi-supervised integration |
| CITE-seq (RNA+protein) | **totalVI** | Multi-modal integration, protein denoising |
| scATAC-seq | **PeakVI** | Chromatin accessibility analysis |
| Multiome (RNA+ATAC) | **MultiVI** | Joint modality analysis |
| Spatial + scRNA reference | **DestVI** | Cell type deconvolution |
| RNA velocity | **veloVI** | Transcriptional dynamics |
| Cross-technology | **sysVI** | System-level batch correction |

## Workflow Reference Files

| Workflow | Reference File | Description |
|----------|---------------|-------------|
| Environment Setup | `references/environment_setup.md` | Installation, GPU, version info |
| Data Preparation | `references/data_preparation.md` | Formatting data for any model |
| scRNA Integration | `references/scrna_integration.md` | scVI/scANVI batch correction |
| ATAC-seq Analysis | `references/atac_peakvi.md` | PeakVI for accessibility |
| CITE-seq Analysis | `references/citeseq_totalvi.md` | totalVI for protein+RNA |
| Multiome Analysis | `references/multiome_multivi.md` | MultiVI for RNA+ATAC |
| Spatial Deconvolution | `references/spatial_deconvolution.md` | DestVI spatial analysis |
| Label Transfer | `references/label_transfer.md` | scANVI reference mapping |
| scArches Mapping | `references/scarches_mapping.md` | Query-to-reference mapping |
| Batch Correction | `references/batch_correction_sysvi.md` | Advanced batch methods |
| RNA Velocity | `references/rna_velocity_velovi.md` | veloVI dynamics |
| Troubleshooting | `references/troubleshooting.md` | Common issues and solutions |

## CLI Scripts

Modular scripts for common workflows. Chain together or modify as needed.

### Pipeline Scripts

| Script | Purpose | Usage |
|--------|---------|-------|
| `prepare_data.py` | QC, filter, HVG selection | `python scripts/prepare_data.py raw.h5ad prepared.h5ad --batch-key batch` |
| `train_model.py` | Train any scvi-tools model | `python scripts/train_model.py prepared.h5ad results/ --model scvi` |
| `cluster_embed.py` | Neighbors, UMAP, Leiden | `python scripts/cluster_embed.py adata.h5ad results/` |
| `differential_expression.py` | DE analysis | `python scripts/differential_expression.py model/ adata.h5ad de.csv --groupby leiden` |
| `transfer_labels.py` | Label transfer with scANVI | `python scripts/transfer_labels.py ref_model/ query.h5ad results/` |
| `integrate_datasets.py` | Multi-dataset integration | `python scripts/integrate_datasets.py results/ data1.h5ad data2.h5ad` |
| `validate_adata.py` | Check data compatibility | `python scripts/validate_adata.py data.h5ad --batch-key batch` |

### Example Workflow

```bash
# 1. Validate input data
python scripts/validate_adata.py raw.h5ad --batch-key batch --suggest

# 2. Prepare data (QC, HVG selection)
python scripts/prepare_data.py raw.h5ad prepared.h5ad --batch-key batch --n-hvgs 2000

# 3. Train model
python scripts/train_model.py prepared.h5ad results/ --model scvi --batch-key batch

# 4. Cluster and visualize
python scripts/cluster_embed.py results/adata_trained.h5ad results/ --resolution 0.8

# 5. Differential expression
python scripts/differential_expression.py results/model results/adata_clustered.h5ad results/de.csv --groupby leiden
```

### Python Utilities

The `scripts/model_utils.py` provides importable functions for custom workflows:

| Function | Purpose |
|----------|---------|
| `prepare_adata()` | Data preparation (QC, HVG, layer setup) |
| `train_scvi()` | Train scVI or scANVI |
| `evaluate_integration()` | Compute integration metrics |
| `get_marker_genes()` | Extract DE markers |
| `save_results()` | Save model, data, plots |
| `auto_select_model()` | Suggest best model |
| `quick_clustering()` | Neighbors + UMAP + Leiden |

## Critical Requirements

1. **Raw counts required**: scvi-tools models require integer count data
   ```python
   adata.layers["counts"] = adata.X.copy()  # Before normalization
   scvi.model.SCVI.setup_anndata(adata, layer="counts")
   ```

2. **HVG selection**: Use 2000-4000 highly variable genes
   ```python
   sc.pp.highly_variable_genes(adata, n_top_genes=2000, batch_key="batch", layer="counts", flavor="seurat_v3")
   adata = adata[:, adata.var['highly_variable']].copy()
   ```

3. **Batch information**: Specify batch_key for integration
   ```python
   scvi.model.SCVI.setup_anndata(adata, layer="counts", batch_key="batch")
   ```

## Quick Decision Tree

```
Need to integrate scRNA-seq data?
├── Have cell type labels? → scANVI (references/label_transfer.md)
└── No labels? → scVI (references/scrna_integration.md)

Have multi-modal data?
├── CITE-seq (RNA + protein)? → totalVI (references/citeseq_totalvi.md)
├── Multiome (RNA + ATAC)? → MultiVI (references/multiome_multivi.md)
└── scATAC-seq only? → PeakVI (references/atac_peakvi.md)

Have spatial data?
└── Need cell type deconvolution? → DestVI (references/spatial_deconvolution.md)

Have pre-trained reference model?
└── Map query to reference? → scArches (references/scarches_mapping.md)

Need RNA velocity?
└── veloVI (references/rna_velocity_velovi.md)

Strong cross-technology batch effects?
└── sysVI (references/batch_correction_sysvi.md)
```

## Key Resources

- [scvi-tools Documentation](https://docs.scvi-tools.org/)
- [scvi-tools Tutorials](https://docs.scvi-tools.org/en/stable/tutorials/index.html)
- [Model Hub](https://huggingface.co/scvi-tools)
- [GitHub Issues](https://github.com/scverse/scvi-tools/issues)

Overview

This skill guides deep learning-based single-cell analysis using scvi-tools, a suite of probabilistic models for scRNA-seq, ATAC, multi-modal, spatial, and velocity data. It helps pick the right model, prepare count-based AnnData inputs, run training, and perform downstream tasks like integration, label transfer, and differential expression. The content focuses on practical scripts, utilities, and decision rules for common single-cell workflows.

How this skill works

The skill inspects the data modality and analysis goal to recommend models such as scVI, scANVI, totalVI, PeakVI, MultiVI, DestVI, veloVI, or sysVI. It outlines required preprocessing (raw counts, HVG selection, batch keys), provides CLI scripts and Python utilities to run training, embedding, clustering, and DE, and describes mapping/query workflows for reference-based label transfer. It also points to environment and troubleshooting guidance for GPU and installation issues.

When to use it

  • You need deep learning-based batch correction or integration across batches or technologies.
  • You have multi-modal data (CITE-seq, multiome) and need joint modeling or protein denoising.
  • You want label transfer or reference mapping from a labeled atlas to a query dataset.
  • You are analyzing scATAC-seq or need chromatin accessibility modeling with PeakVI.
  • You need spatial transcriptomics deconvolution or RNA velocity analysis with veloVI.

Best practices

  • Always provide raw integer counts in an AnnData layer (e.g., adata.layers['counts']) before normalization.
  • Select 2,000–4,000 highly variable genes and restrict models to those genes for stability and speed.
  • Specify a batch_key in setup_anndata to enable correct batch correction and integration.
  • Validate AnnData compatibility early and run the provided prepare_data utilities to standardize inputs.
  • Use provided training scripts and model utilities to save reproducible checkpoints and diagnostics.

Example use cases

  • Integrate multiple scRNA-seq batches with scVI to obtain a corrected latent embedding for clustering and DE.
  • Map a new clinical query dataset onto a reference atlas with scANVI or scArches for automated label transfer.
  • Denoise protein measurements and jointly analyze RNA+protein CITE-seq data using totalVI.
  • Analyze single-cell ATAC-seq peaks and identify differential accessibility with PeakVI.
  • Perform spatial deconvolution of spot-level data using DestVI with a single-cell RNA reference.

FAQ

Do scvi-tools models require raw counts?

Yes. Models require integer raw counts stored in an AnnData layer (commonly 'counts') and should be set up via setup_anndata before training.

How many highly variable genes should I use?

Use 2,000–4,000 HVGs. This balances model performance and training time; 2,000 is a common default.