home / skills / ancoleman / ai-design-components / using-message-queues
This skill helps you design and implement asynchronous messaging using brokers like Kafka, RabbitMQ, and Redis to improve reliability and scalability.
npx playbooks add skill ancoleman/ai-design-components --skill using-message-queuesReview the files below or copy the command above to add this skill to your agents.
---
name: using-message-queues
description: Async communication patterns using message brokers and task queues. Use when building event-driven systems, background job processing, or service decoupling. Covers Kafka (event streaming), RabbitMQ (complex routing), NATS (cloud-native), Redis Streams, Celery (Python), BullMQ (TypeScript), Temporal (workflows), and event sourcing patterns.
---
# Message Queues
Implement asynchronous communication patterns for event-driven architectures, background job processing, and service decoupling.
## When to Use This Skill
Use message queues when:
- **Long-running operations** block HTTP requests (report generation, video processing)
- **Service decoupling** required (microservices, event-driven architecture)
- **Guaranteed delivery** needed (payment processing, order fulfillment)
- **Event streaming** for analytics (log aggregation, metrics pipelines)
- **Workflow orchestration** for complex processes (multi-step sagas, human-in-the-loop)
- **Background job processing** (email sending, image resizing)
## Broker Selection Decision Tree
Choose message broker based on primary need:
### Event Streaming / Log Aggregation
**→ Apache Kafka**
- Throughput: 500K-1M msg/s
- Replay events (event sourcing)
- Exactly-once semantics
- Long-term retention
- Use: Analytics pipelines, CQRS, event sourcing
### Simple Background Jobs
**→ Task Queues**
- **Python** → Celery + Redis
- **TypeScript** → BullMQ + Redis
- **Go** → Asynq + Redis
- Use: Email sending, report generation, webhooks
### Complex Workflows / Sagas
**→ Temporal**
- Durable execution (survives restarts)
- Saga pattern support
- Human-in-the-loop workflows
- Use: Order processing, AI agent orchestration
### Request-Reply / RPC Patterns
**→ NATS**
- Built-in request-reply
- Sub-millisecond latency
- Cloud-native, simple operations
- Use: Microservices RPC, IoT command/control
### Complex Message Routing
**→ RabbitMQ**
- Exchanges (direct, topic, fanout, headers)
- Dead letter exchanges
- Message TTL, priorities
- Use: Multi-consumer patterns, pub/sub
### Already Using Redis
**→ Redis Streams**
- No new infrastructure
- Simple consumer groups
- Moderate throughput (100K+ msg/s)
- Use: Notification queues, simple job queues
## Performance Comparison
| Broker | Throughput | Latency (p99) | Best For |
|--------|-----------|---------------|----------|
| **Kafka** | 500K-1M msg/s | 10-50ms | Event streaming |
| **NATS JetStream** | 200K-400K msg/s | Sub-ms to 5ms | Cloud-native microservices |
| **RabbitMQ** | 50K-100K msg/s | 5-20ms | Task queues, complex routing |
| **Redis Streams** | 100K+ msg/s | Sub-ms | Simple queues, caching |
## Quick Start Examples
### Kafka Producer/Consumer (Python)
See `examples/kafka-python/` for working code.
```python
from confluent_kafka import Producer, Consumer
# Producer
producer = Producer({'bootstrap.servers': 'localhost:9092'})
producer.produce('orders', key='order_123', value='{"status": "created"}')
producer.flush()
# Consumer
consumer = Consumer({
'bootstrap.servers': 'localhost:9092',
'group.id': 'order-processors',
'auto.offset.reset': 'earliest'
})
consumer.subscribe(['orders'])
while True:
msg = consumer.poll(1.0)
if msg is not None:
process_order(msg.value())
```
### Celery Background Jobs (Python)
See `examples/celery-image-processing/` for full implementation.
```python
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379')
@app.task(bind=True, max_retries=3)
def process_image(self, image_url: str):
try:
result = expensive_image_processing(image_url)
return result
except RecoverableError as e:
raise self.retry(exc=e, countdown=60)
```
### BullMQ Job Processing (TypeScript)
See `examples/bullmq-webhook-processor/` for full implementation.
```typescript
import { Queue, Worker } from 'bullmq'
const queue = new Queue('webhooks', {
connection: { host: 'localhost', port: 6379 }
})
// Enqueue job
await queue.add('send-webhook', {
url: 'https://example.com/webhook',
payload: { event: 'order.created' }
})
// Process jobs
const worker = new Worker('webhooks', async job => {
await fetch(job.data.url, {
method: 'POST',
body: JSON.stringify(job.data.payload)
})
}, { connection: { host: 'localhost', port: 6379 } })
```
### Temporal Workflow Orchestration
See `examples/temporal-order-saga/` for saga pattern implementation.
```python
from temporalio import workflow, activity
from datetime import timedelta
@workflow.defn
class OrderSagaWorkflow:
@workflow.run
async def run(self, order_id: str) -> str:
# Step 1: Reserve inventory
inventory_id = await workflow.execute_activity(
reserve_inventory,
order_id,
start_to_close_timeout=timedelta(seconds=10),
)
# Step 2: Charge payment
payment_id = await workflow.execute_activity(
charge_payment,
order_id,
start_to_close_timeout=timedelta(seconds=30),
)
return f"Order {order_id} completed"
```
## Core Patterns
### Event Naming Convention
Use: `Domain.Entity.Action.Version`
Examples:
- `order.created.v1`
- `user.profile.updated.v2`
- `payment.failed.v1`
### Event Schema Structure
```json
{
"event_type": "order.created.v2",
"event_id": "uuid-here",
"timestamp": "2025-12-02T10:00:00Z",
"version": "2.0",
"data": {
"order_id": "ord_123",
"customer_id": "cus_456"
},
"metadata": {
"producer": "order-service",
"trace_id": "abc123",
"correlation_id": "xyz789"
}
}
```
### Dead Letter Queue Pattern
Route failed messages to dead letter queue (DLQ) after max retries:
```python
@app.task(bind=True, max_retries=3)
def process_order(self, order_id: str):
try:
result = perform_processing(order_id)
return result
except UnrecoverableError as e:
send_to_dlq(order_id, str(e))
raise Reject(e, requeue=False)
```
### Idempotency for Exactly-Once Processing
```python
@app.post("/process")
async def process_payment(
payment_data: dict,
idempotency_key: str = Header(None)
):
# Check if already processed
cached_result = redis_client.get(f"idempotency:{idempotency_key}")
if cached_result:
return {"status": "already_processed"}
result = process_payment_logic(payment_data)
redis_client.setex(f"idempotency:{idempotency_key}", 86400, result)
return {"status": "processed", "result": result}
```
## Frontend Integration
### Job Status Updates via SSE
```python
# FastAPI endpoint for real-time job status
@app.get("/status/{task_id}")
async def task_status_stream(task_id: str):
async def event_generator():
while True:
task = celery_app.AsyncResult(task_id)
if task.state == 'PROGRESS':
yield {"event": "progress", "data": task.info.get('progress', 0)}
elif task.state == 'SUCCESS':
yield {"event": "complete", "data": task.result}
break
await asyncio.sleep(0.5)
return EventSourceResponse(event_generator())
```
### React Component
```typescript
export function JobStatus({ jobId }: { jobId: string }) {
const [progress, setProgress] = useState(0)
useEffect(() => {
const eventSource = new EventSource(`/api/status/${jobId}`)
eventSource.addEventListener('progress', (e) => {
setProgress(JSON.parse(e.data))
})
eventSource.addEventListener('complete', (e) => {
toast({ title: 'Job complete', description: JSON.parse(e.data) })
eventSource.close()
})
return () => eventSource.close()
}, [jobId])
return <ProgressBar value={progress} />
}
```
## Detailed Guides
For comprehensive documentation, see reference files:
### Broker-Specific Guides
- **Kafka**: See `references/kafka.md` for partitioning, consumer groups, exactly-once semantics
- **RabbitMQ**: See `references/rabbitmq.md` for exchanges, bindings, routing patterns
- **NATS**: See `references/nats.md` for JetStream, request-reply patterns
- **Redis Streams**: See `references/redis-streams.md` for consumer groups, acknowledgments
### Task Queue Guides
- **Celery**: See `references/celery.md` for periodic tasks, canvas (workflows), monitoring
- **BullMQ**: See `references/bullmq.md` for job prioritization, flows, Bull Board monitoring
- **Temporal**: See `references/temporal-workflows.md` for saga patterns, signals, queries
### Pattern Guides
- **Event Patterns**: See `references/event-patterns.md` for event sourcing, CQRS, outbox pattern
## Common Anti-Patterns to Avoid
### 1. Synchronous API for Long Operations
```python
# ❌ BAD: Blocks request thread
@app.post("/generate-report")
def generate_report(user_id: str):
report = expensive_computation(user_id) # 5 minutes!
return report
# ✅ GOOD: Enqueue background job
@app.post("/generate-report")
async def generate_report(user_id: str):
task = generate_report_task.delay(user_id)
return {"task_id": task.id}
```
### 2. Non-Idempotent Consumers
```python
# ❌ BAD: Processes duplicates
@app.task
def send_email(email: str):
send_email_service(email) # Sends twice if retried!
# ✅ GOOD: Idempotent with deduplication
@app.task
def send_email(email: str, idempotency_key: str):
if redis.exists(f"sent:{idempotency_key}"):
return "already_sent"
send_email_service(email)
redis.setex(f"sent:{idempotency_key}", 86400, "1")
```
### 3. Ignoring Dead Letter Queues
```python
# ❌ BAD: Failed messages lost forever
@app.task(max_retries=3)
def risky_task(data):
process(data) # If all retries fail, data disappears
# ✅ GOOD: DLQ for manual inspection
@app.task(max_retries=3)
def risky_task(data):
try:
process(data)
except Exception as e:
if self.request.retries >= 3:
send_to_dlq(data, str(e))
raise
```
### 4. Using Kafka for Request-Reply
```python
# ❌ BAD: Kafka is not designed for RPC
def get_user_profile(user_id: str):
kafka_producer.send("user_requests", {"user_id": user_id})
# How to correlate response? Kafka is asynchronous!
# ✅ GOOD: Use NATS request-reply or HTTP/gRPC
response = await nats.request("user.profile", user_id.encode())
```
## Library Recommendations
### Context7 Research
**Confluent Kafka (Python)**
- Context7 ID: `/confluentinc/confluent-kafka-python`
- Trust Score: 68.8/100
- Code Snippets: 192+
- Production-ready Python Kafka client
**Temporal**
- Context7 ID: `/websites/temporal_io`
- Trust Score: 80.9/100
- Code Snippets: 3,769+
- Workflow orchestration for durable execution
### Installation
**Python:**
```bash
pip install confluent-kafka celery[redis] temporalio aio-pika redis
```
**TypeScript/Node.js:**
```bash
npm install kafkajs bullmq @temporalio/client amqplib ioredis
```
**Rust:**
```bash
cargo add rdkafka lapin async-nats redis
```
**Go:**
```bash
go get github.com/confluentinc/confluent-kafka-go
go get github.com/hibiken/asynq
go get go.temporal.io/sdk
```
## Utilities
Use scripts for setup automation:
- **Kafka setup**: Run `python scripts/kafka_producer_consumer.py` for test utilities
- **Schema validation**: Run `python scripts/validate_message_schema.py` to validate event schemas
## Related Skills
- **api-patterns**: API design for async job submission
- **realtime-sync**: WebSocket/SSE for job status updates
- **feedback**: Toast notifications for job completion
- **databases-***: Persistent storage for event logs
- **observability**: Tracing and metrics for queue operations
This skill teaches asynchronous communication using message brokers and task queues for event-driven systems, background jobs, and service decoupling. It compares brokers (Kafka, RabbitMQ, NATS, Redis Streams), task queues (Celery, BullMQ), and orchestration tools (Temporal), and provides concrete examples and patterns for production use. The content focuses on broker selection, event schema, idempotency, DLQs, and frontend integration for job status.
The skill inspects use cases (throughput, latency, routing, durability) and maps them to appropriate brokers and libraries. It provides code examples for producers/consumers, task workers, and workflows, plus patterns like event naming, schema shape, DLQs, and idempotency. It also includes frontend patterns (SSE/React) for real-time job status and practical anti-patterns to avoid.
Which broker should I pick for low-latency RPC?
Use NATS for sub-millisecond request-reply; avoid Kafka for RPC patterns.
How do I prevent duplicate processing?
Use idempotency keys stored in a fast store (Redis) and design consumers to check/record processing state before side effects.
When should I use Temporal instead of a task queue?
Choose Temporal for multi-step durable workflows, sagas, human approvals, or when execution must survive restarts and long waits.