home / skills / ancoleman / ai-design-components / evaluating-llms
This skill helps you evaluate LLM systems with automated metrics, LLM-as-judge, and benchmarks to ensure quality and safety in production.
npx playbooks add skill ancoleman/ai-design-components --skill evaluating-llmsReview the files below or copy the command above to add this skill to your agents.
---
name: evaluating-llms
description: Evaluate LLM systems using automated metrics, LLM-as-judge, and benchmarks. Use when testing prompt quality, validating RAG pipelines, measuring safety (hallucinations, bias), or comparing models for production deployment.
---
# LLM Evaluation
Evaluate Large Language Model (LLM) systems using automated metrics, LLM-as-judge patterns, and standardized benchmarks to ensure production quality and safety.
## When to Use This Skill
Apply this skill when:
- Testing individual prompts for correctness and formatting
- Validating RAG (Retrieval-Augmented Generation) pipeline quality
- Measuring hallucinations, bias, or toxicity in LLM outputs
- Comparing different models or prompt configurations (A/B testing)
- Running benchmark tests (MMLU, HumanEval) to assess model capabilities
- Setting up production monitoring for LLM applications
- Integrating LLM quality checks into CI/CD pipelines
Common triggers:
- "How do I test if my RAG system is working correctly?"
- "How can I measure hallucinations in LLM outputs?"
- "What metrics should I use to evaluate generation quality?"
- "How do I compare GPT-4 vs Claude for my use case?"
- "How do I detect bias in LLM responses?"
## Evaluation Strategy Selection
### Decision Framework: Which Evaluation Approach?
**By Task Type:**
| Task Type | Primary Approach | Metrics | Tools |
|-----------|------------------|---------|-------|
| **Classification** (sentiment, intent) | Automated metrics | Accuracy, Precision, Recall, F1 | scikit-learn |
| **Generation** (summaries, creative text) | LLM-as-judge + automated | BLEU, ROUGE, BERTScore, Quality rubric | GPT-4/Claude for judging |
| **Question Answering** | Exact match + semantic similarity | EM, F1, Cosine similarity | Custom evaluators |
| **RAG Systems** | RAGAS framework | Faithfulness, Answer/Context relevance | RAGAS library |
| **Code Generation** | Unit tests + execution | Pass@K, Test pass rate | HumanEval, pytest |
| **Multi-step Agents** | Task completion + tool accuracy | Success rate, Efficiency | Custom evaluators |
**By Volume and Cost:**
| Samples | Speed | Cost | Recommended Approach |
|---------|-------|------|---------------------|
| 1,000+ | Immediate | $0 | Automated metrics (regex, JSON validation) |
| 100-1,000 | Minutes | $0.01-0.10 each | LLM-as-judge (GPT-4, Claude) |
| < 100 | Hours | $1-10 each | Human evaluation (pairwise comparison) |
**Layered Approach (Recommended for Production):**
1. **Layer 1:** Automated metrics for all outputs (fast, cheap)
2. **Layer 2:** LLM-as-judge for 10% sample (nuanced quality)
3. **Layer 3:** Human review for 1% edge cases (validation)
## Core Evaluation Patterns
### Unit Evaluation (Individual Prompts)
Test single prompt-response pairs for correctness.
**Methods:**
- **Exact Match:** Response exactly matches expected output
- **Regex Matching:** Response follows expected pattern
- **JSON Schema Validation:** Structured output validation
- **Keyword Presence:** Required terms appear in response
- **LLM-as-Judge:** Binary pass/fail using evaluation prompt
**Example Use Cases:**
- Email classification (spam/not spam)
- Entity extraction (dates, names, locations)
- JSON output formatting validation
- Sentiment analysis (positive/negative/neutral)
**Quick Start (Python):**
```python
import pytest
from openai import OpenAI
client = OpenAI()
def classify_sentiment(text: str) -> str:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "Classify sentiment as positive, negative, or neutral. Return only the label."},
{"role": "user", "content": text}
],
temperature=0
)
return response.choices[0].message.content.strip().lower()
def test_positive_sentiment():
result = classify_sentiment("I love this product!")
assert result == "positive"
```
For complete unit evaluation examples, see `examples/python/unit_evaluation.py` and `examples/typescript/unit-evaluation.ts`.
### RAG (Retrieval-Augmented Generation) Evaluation
Evaluate RAG systems using RAGAS framework metrics.
**Critical Metrics (Priority Order):**
1. **Faithfulness** (Target: > 0.8) - **MOST CRITICAL**
- Measures: Is the answer grounded in retrieved context?
- Prevents hallucinations
- If failing: Adjust prompt to emphasize grounding, require citations
2. **Answer Relevance** (Target: > 0.7)
- Measures: How well does the answer address the query?
- If failing: Improve prompt instructions, add few-shot examples
3. **Context Relevance** (Target: > 0.7)
- Measures: Are retrieved chunks relevant to the query?
- If failing: Improve retrieval (better embeddings, hybrid search)
4. **Context Precision** (Target: > 0.5)
- Measures: Are relevant chunks ranked higher than irrelevant?
- If failing: Add re-ranking step to retrieval pipeline
5. **Context Recall** (Target: > 0.8)
- Measures: Are all relevant chunks retrieved?
- If failing: Increase retrieval count, improve chunking strategy
**Quick Start (Python with RAGAS):**
```python
from ragas import evaluate
from ragas.metrics import faithfulness, answer_relevancy, context_relevancy
from datasets import Dataset
data = {
"question": ["What is the capital of France?"],
"answer": ["The capital of France is Paris."],
"contexts": [["Paris is the capital of France."]],
"ground_truth": ["Paris"]
}
dataset = Dataset.from_dict(data)
results = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_relevancy])
print(f"Faithfulness: {results['faithfulness']:.2f}")
```
For comprehensive RAG evaluation patterns, see `references/rag-evaluation.md` and `examples/python/ragas_example.py`.
### LLM-as-Judge Evaluation
Use powerful LLMs (GPT-4, Claude Opus) to evaluate other LLM outputs.
**When to Use:**
- Generation quality assessment (summaries, creative writing)
- Nuanced evaluation criteria (tone, clarity, helpfulness)
- Custom rubrics for domain-specific tasks
- Medium-volume evaluation (100-1,000 samples)
**Correlation with Human Judgment:** 0.75-0.85 for well-designed rubrics
**Best Practices:**
- Use clear, specific rubrics (1-5 scale with detailed criteria)
- Include few-shot examples in evaluation prompt
- Average multiple evaluations to reduce variance
- Be aware of biases (position bias, verbosity bias, self-preference)
**Quick Start (Python):**
```python
from openai import OpenAI
client = OpenAI()
def evaluate_quality(prompt: str, response: str) -> tuple[int, str]:
"""Returns (score 1-5, reasoning)"""
eval_prompt = f"""
Rate the following LLM response on relevance and helpfulness.
USER PROMPT: {prompt}
LLM RESPONSE: {response}
Provide:
Score: [1-5, where 5 is best]
Reasoning: [1-2 sentences]
"""
result = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": eval_prompt}],
temperature=0.3
)
content = result.choices[0].message.content
lines = content.strip().split('\n')
score = int(lines[0].split(':')[1].strip())
reasoning = lines[1].split(':', 1)[1].strip()
return score, reasoning
```
For detailed LLM-as-judge patterns and prompt templates, see `references/llm-as-judge.md` and `examples/python/llm_as_judge.py`.
### Safety and Alignment Evaluation
Measure hallucinations, bias, and toxicity in LLM outputs.
#### Hallucination Detection
**Methods:**
1. **Faithfulness to Context (RAG):**
- Use RAGAS faithfulness metric
- LLM checks if claims are supported by context
- Score: Supported claims / Total claims
2. **Factual Accuracy (Closed-Book):**
- LLM-as-judge with access to reliable sources
- Fact-checking APIs (Google Fact Check)
- Entity-level verification (dates, names, statistics)
3. **Self-Consistency:**
- Generate multiple responses to same question
- Measure agreement between responses
- Low consistency suggests hallucination
#### Bias Evaluation
**Types of Bias:**
- Gender bias (stereotypical associations)
- Racial/ethnic bias (discriminatory outputs)
- Cultural bias (Western-centric assumptions)
- Age/disability bias (ableist or ageist language)
**Evaluation Methods:**
1. **Stereotype Tests:**
- BBQ (Bias Benchmark for QA): 58,000 question-answer pairs
- BOLD (Bias in Open-Ended Language Generation)
2. **Counterfactual Evaluation:**
- Generate responses with demographic swaps
- Example: "Dr. Smith (he/she) recommended..." → compare outputs
- Measure consistency across variations
#### Toxicity Detection
**Tools:**
- **Perspective API (Google):** Toxicity, threat, insult scores
- **Detoxify (HuggingFace):** Open-source toxicity classifier
- **OpenAI Moderation API:** Hate, harassment, violence detection
For comprehensive safety evaluation patterns, see `references/safety-evaluation.md`.
### Benchmark Testing
Assess model capabilities using standardized benchmarks.
**Standard Benchmarks:**
| Benchmark | Coverage | Format | Difficulty | Use Case |
|-----------|----------|--------|------------|----------|
| **MMLU** | 57 subjects (STEM, humanities) | Multiple choice | High school - professional | General intelligence |
| **HellaSwag** | Sentence completion | Multiple choice | Common sense | Reasoning validation |
| **GPQA** | PhD-level science | Multiple choice | Very high (expert-level) | Frontier model testing |
| **HumanEval** | 164 Python problems | Code generation | Medium | Code capability |
| **MATH** | 12,500 competition problems | Math solving | High school competitions | Math reasoning |
**Domain-Specific Benchmarks:**
- **Medical:** MedQA (USMLE), PubMedQA
- **Legal:** LegalBench
- **Finance:** FinQA, ConvFinQA
**When to Use Benchmarks:**
- Comparing multiple models (GPT-4 vs Claude vs Llama)
- Model selection for specific domains
- Baseline capability assessment
- Academic research and publication
**Quick Start (lm-evaluation-harness):**
```bash
pip install lm-eval
# Evaluate GPT-4 on MMLU
lm_eval --model openai-chat --model_args model=gpt-4 --tasks mmlu --num_fewshot 5
```
For detailed benchmark testing patterns, see `references/benchmarks.md` and `scripts/benchmark_runner.py`.
### Production Evaluation
Monitor and optimize LLM quality in production environments.
#### A/B Testing
Compare two LLM configurations:
- **Variant A:** GPT-4 (expensive, high quality)
- **Variant B:** Claude Sonnet (cheaper, fast)
**Metrics:**
- User satisfaction scores (thumbs up/down)
- Task completion rates
- Response time and latency
- Cost per successful interaction
#### Online Evaluation
Real-time quality monitoring:
- **Response Quality:** LLM-as-judge scoring every Nth response
- **User Feedback:** Explicit ratings, thumbs up/down
- **Business Metrics:** Conversion rates, support ticket resolution
- **Cost Tracking:** Tokens used, inference costs
#### Human-in-the-Loop
Sample-based human evaluation:
- **Random Sampling:** Evaluate 10% of responses
- **Confidence-Based:** Evaluate low-confidence outputs
- **Error-Triggered:** Flag suspicious responses for review
For production evaluation patterns and monitoring strategies, see `references/production-evaluation.md`.
## Classification Task Evaluation
For tasks with discrete outputs (sentiment, intent, category).
**Metrics:**
- **Accuracy:** Correct predictions / Total predictions
- **Precision:** True positives / (True positives + False positives)
- **Recall:** True positives / (True positives + False negatives)
- **F1 Score:** Harmonic mean of precision and recall
- **Confusion Matrix:** Detailed breakdown of prediction errors
**Quick Start (Python):**
```python
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
y_true = ["positive", "negative", "neutral", "positive", "negative"]
y_pred = ["positive", "negative", "neutral", "neutral", "negative"]
accuracy = accuracy_score(y_true, y_pred)
precision, recall, f1, _ = precision_recall_fscore_support(y_true, y_pred, average='weighted')
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
print(f"F1 Score: {f1:.2f}")
```
For complete classification evaluation examples, see `examples/python/classification_metrics.py`.
## Generation Task Evaluation
For open-ended text generation (summaries, creative writing, responses).
**Automated Metrics (Use with Caution):**
- **BLEU:** N-gram overlap with reference text (0-1 score)
- **ROUGE:** Recall-oriented overlap (ROUGE-1, ROUGE-L)
- **METEOR:** Semantic similarity with stemming
- **BERTScore:** Contextual embedding similarity (0-1 score)
**Limitation:** Automated metrics correlate weakly with human judgment for creative/subjective generation.
**Recommended Approach:**
1. **Automated metrics:** Fast feedback for objective aspects (length, format)
2. **LLM-as-judge:** Nuanced quality assessment (relevance, coherence, helpfulness)
3. **Human evaluation:** Final validation for subjective criteria (preference, creativity)
For detailed generation evaluation patterns, see `references/evaluation-types.md`.
## Quick Reference Tables
### Evaluation Framework Selection
| If Task Is... | Use This Framework | Primary Metric |
|---------------|-------------------|----------------|
| RAG system | RAGAS | Faithfulness > 0.8 |
| Classification | scikit-learn metrics | Accuracy, F1 |
| Generation quality | LLM-as-judge | Quality rubric (1-5) |
| Code generation | HumanEval | Pass@1, Test pass rate |
| Model comparison | Benchmark testing | MMLU, HellaSwag scores |
| Safety validation | Hallucination detection | Faithfulness, Fact-check |
| Production monitoring | Online evaluation | User feedback, Business KPIs |
### Python Library Recommendations
| Library | Use Case | Installation |
|---------|----------|--------------|
| **RAGAS** | RAG evaluation | `pip install ragas` |
| **DeepEval** | General LLM evaluation, pytest integration | `pip install deepeval` |
| **LangSmith** | Production monitoring, A/B testing | `pip install langsmith` |
| **lm-eval** | Benchmark testing (MMLU, HumanEval) | `pip install lm-eval` |
| **scikit-learn** | Classification metrics | `pip install scikit-learn` |
### Safety Evaluation Priority Matrix
| Application | Hallucination Risk | Bias Risk | Toxicity Risk | Evaluation Priority |
|-------------|-------------------|-----------|---------------|---------------------|
| Customer Support | High | Medium | High | 1. Faithfulness, 2. Toxicity, 3. Bias |
| Medical Diagnosis | Critical | High | Low | 1. Factual Accuracy, 2. Hallucination, 3. Bias |
| Creative Writing | Low | Medium | Medium | 1. Quality/Fluency, 2. Content Policy |
| Code Generation | Medium | Low | Low | 1. Functional Correctness, 2. Security |
| Content Moderation | Low | Critical | Critical | 1. Bias, 2. False Positives/Negatives |
## Detailed References
For comprehensive documentation on specific topics:
- **Evaluation types (classification, generation, QA, code):** `references/evaluation-types.md`
- **RAG evaluation deep dive (RAGAS framework):** `references/rag-evaluation.md`
- **Safety evaluation (hallucination, bias, toxicity):** `references/safety-evaluation.md`
- **Benchmark testing (MMLU, HumanEval, domain benchmarks):** `references/benchmarks.md`
- **LLM-as-judge best practices and prompts:** `references/llm-as-judge.md`
- **Production evaluation (A/B testing, monitoring):** `references/production-evaluation.md`
- **All metrics definitions and formulas:** `references/metrics-reference.md`
## Working Examples
**Python Examples:**
- `examples/python/unit_evaluation.py` - Basic prompt testing with pytest
- `examples/python/ragas_example.py` - RAGAS RAG evaluation
- `examples/python/deepeval_example.py` - DeepEval framework usage
- `examples/python/llm_as_judge.py` - GPT-4 as evaluator
- `examples/python/classification_metrics.py` - Accuracy, precision, recall
- `examples/python/benchmark_testing.py` - HumanEval example
**TypeScript Examples:**
- `examples/typescript/unit-evaluation.ts` - Vitest + OpenAI
- `examples/typescript/llm-as-judge.ts` - GPT-4 evaluation
- `examples/typescript/langsmith-integration.ts` - Production monitoring
## Executable Scripts
Run evaluations without loading code into context (token-free):
- `scripts/run_ragas_eval.py` - Run RAGAS evaluation on dataset
- `scripts/compare_models.py` - A/B test two models
- `scripts/benchmark_runner.py` - Run MMLU/HumanEval benchmarks
- `scripts/hallucination_checker.py` - Detect hallucinations in outputs
**Example usage:**
```bash
# Run RAGAS evaluation on custom dataset
python scripts/run_ragas_eval.py --dataset data/qa_dataset.json --output results.json
# Compare GPT-4 vs Claude on benchmark
python scripts/compare_models.py --model-a gpt-4 --model-b claude-3-opus --tasks mmlu,humaneval
```
## Integration with Other Skills
**Related Skills:**
- **`building-ai-chat`:** Evaluate AI chat applications (this skill tests what that skill builds)
- **`prompt-engineering`:** Test prompt quality and effectiveness
- **`testing-strategies`:** Apply testing pyramid to LLM evaluation (unit → integration → E2E)
- **`observability`:** Production monitoring and alerting for LLM quality
- **`building-ci-pipelines`:** Integrate LLM evaluation into CI/CD
**Workflow Integration:**
1. Write prompt (use `prompt-engineering` skill)
2. Unit test prompt (use `llm-evaluation` skill)
3. Build AI feature (use `building-ai-chat` skill)
4. Integration test RAG pipeline (use `llm-evaluation` skill)
5. Deploy to production (use `deploying-applications` skill)
6. Monitor quality (use `llm-evaluation` + `observability` skills)
## Common Pitfalls
**1. Over-reliance on Automated Metrics for Generation**
- BLEU/ROUGE correlate weakly with human judgment for creative text
- Solution: Layer LLM-as-judge or human evaluation
**2. Ignoring Faithfulness in RAG Systems**
- Hallucinations are the #1 RAG failure mode
- Solution: Prioritize faithfulness metric (target > 0.8)
**3. No Production Monitoring**
- Models can degrade over time, prompts can break with updates
- Solution: Set up continuous evaluation (LangSmith, custom monitoring)
**4. Biased LLM-as-Judge Evaluation**
- Evaluator LLMs have biases (position bias, verbosity bias)
- Solution: Average multiple evaluations, use diverse evaluation prompts
**5. Insufficient Benchmark Coverage**
- Single benchmark doesn't capture full model capability
- Solution: Use 3-5 benchmarks across different domains
**6. Missing Safety Evaluation**
- Production LLMs can generate harmful content
- Solution: Add toxicity, bias, and hallucination checks to evaluation pipeline
This skill evaluates Large Language Model (LLM) systems using automated metrics, LLM-as-judge patterns, and standardized benchmarks to ensure quality, safety, and readiness for production. It provides a decision framework for selecting evaluation approaches by task, volume, and cost, plus concrete patterns for unit tests, RAG assessment, safety checks, benchmarks, and production monitoring.
The skill inspects model outputs with layered evaluation: fast automated checks for structure and format, LLM-as-judge for nuanced quality scoring, and human review for edge cases. It integrates libraries and benchmarks (RAGAS, lm-eval, scikit-learn, HumanEval) and measures metrics like faithfulness, EM/F1, BLEU/ROUGE/BERTScore, Pass@K, and toxicity scores. Results drive prompt fixes, retrieval tuning, model selection, and CI/CD gating.
How do I measure hallucinations in a RAG system?
Use RAGAS faithfulness as primary metric, combine LLM-as-judge checks that verify claims against retrieved context, and run entity-level fact checks or self-consistency tests.
When should I use LLM-as-judge vs humans?
Use LLM-as-judge for medium-volume, nuanced evaluations (100–1,000 samples) with a clear rubric; reserve human review for final validation and critical edge cases (<1% or flagged outputs).