home / skills / ancoleman / ai-design-components / debugging-techniques
This skill guides production-safe debugging across languages and containers, enabling breakpoints, remote access, and correlation tracing to diagnose issues
npx playbooks add skill ancoleman/ai-design-components --skill debugging-techniquesReview the files below or copy the command above to add this skill to your agents.
---
name: debugging-techniques
description: Debugging workflows for Python (pdb, debugpy), Go (delve), Rust (lldb), and Node.js, including container debugging (kubectl debug, ephemeral containers) and production-safe debugging techniques with distributed tracing and correlation IDs. Use when setting breakpoints, debugging containers/pods, remote debugging, or production debugging.
---
# Debugging Techniques
## Purpose
Provides systematic debugging workflows for local, remote, container, and production environments across Python, Go, Rust, and Node.js. Covers interactive debuggers, container debugging with ephemeral containers, and production-safe techniques using correlation IDs and distributed tracing.
## When to Use This Skill
Trigger this skill for:
- Setting breakpoints in Python, Go, Rust, or Node.js code
- Debugging running containers or Kubernetes pods
- Setting up remote debugging connections
- Safely debugging production issues
- Inspecting goroutines, threads, or async tasks
- Analyzing core dumps or stack traces
- Choosing the right debugging tool for a scenario
## Quick Reference by Language
### Python Debugging
**Built-in: pdb**
```python
# Python 3.7+
def buggy_function(x, y):
breakpoint() # Stops execution here
return x / y
# Older Python
import pdb
pdb.set_trace()
```
**Essential pdb commands:**
- `list` (l) - Show code around current line
- `next` (n) - Execute current line, step over functions
- `step` (s) - Execute current line, step into functions
- `continue` (c) - Continue until next breakpoint
- `print var` (p) - Print variable value
- `where` (w) - Show stack trace
- `quit` (q) - Exit debugger
**Enhanced tools:**
- `ipdb` - Enhanced pdb with tab completion, syntax highlighting (`pip install ipdb`)
- `pudb` - Terminal GUI debugger (`pip install pudb`)
- `debugpy` - VS Code integration (included in Python extension)
**Debugging tests:**
```bash
pytest --pdb # Drop into debugger on test failure
```
For detailed Python debugging patterns, see `references/python-debugging.md`.
### Go Debugging
**Delve - Official Go debugger**
**Installation:**
```bash
go install github.com/go-delve/delve/cmd/dlv@latest
```
**Basic usage:**
```bash
dlv debug main.go # Debug main package
dlv test github.com/me/pkg # Debug test suite
dlv attach <pid> # Attach to running process
dlv debug -- --config prod.yaml # Pass arguments
```
**Essential commands:**
- `break main.main` (b) - Set breakpoint at function
- `break file.go:10` (b) - Set breakpoint at line
- `continue` (c) - Continue execution
- `next` (n) - Step over
- `step` (s) - Step into
- `print x` (p) - Print variable
- `goroutine` (gr) - Show current goroutine
- `goroutines` (grs) - List all goroutines
- `goroutines -t` - Show goroutine stacktraces
- `stack` (bt) - Show stack trace
**Goroutine debugging:**
```bash
(dlv) goroutines # List all goroutines
(dlv) goroutines -t # Show stacktraces
(dlv) goroutines -with user # Filter user goroutines
(dlv) goroutine 5 # Switch to goroutine 5
```
For detailed Go debugging patterns, see `references/go-debugging.md`.
### Rust Debugging
**LLDB - Default Rust debugger**
**Compilation:**
```bash
cargo build # Debug build includes symbols by default
```
**Usage:**
```bash
rust-lldb target/debug/myapp # LLDB wrapper for Rust
rust-gdb target/debug/myapp # GDB wrapper (alternative)
```
**Essential LLDB commands:**
- `breakpoint set -f main.rs -l 10` - Set breakpoint at line
- `breakpoint set -n main` - Set breakpoint at function
- `run` (r) - Start program
- `continue` (c) - Continue execution
- `next` (n) - Step over
- `step` (s) - Step into
- `print variable` (p) - Print variable
- `frame variable` (fr v) - Show local variables
- `backtrace` (bt) - Show stack trace
- `thread list` - List all threads
**VS Code integration:**
- Install CodeLLDB extension (`vadimcn.vscode-lldb`)
- Configure `launch.json` for Rust projects
For detailed Rust debugging patterns, see `references/rust-debugging.md`.
### Node.js Debugging
**Built-in: node --inspect**
**Basic usage:**
```bash
node --inspect-brk app.js # Start and pause immediately
node --inspect app.js # Start and run
node --inspect=0.0.0.0:9229 app.js # Specify host/port
```
**Chrome DevTools:**
1. Open `chrome://inspect`
2. Click "Open dedicated DevTools for Node"
3. Set breakpoints, inspect variables
**VS Code integration:**
Configure `launch.json`:
```json
{
"type": "node",
"request": "launch",
"name": "Launch Program",
"program": "${workspaceFolder}/app.js"
}
```
**Docker debugging:**
```dockerfile
EXPOSE 9229
CMD ["node", "--inspect=0.0.0.0:9229", "app.js"]
```
For detailed Node.js debugging patterns, see `references/nodejs-debugging.md`.
## Container & Kubernetes Debugging
### kubectl debug with Ephemeral Containers
**When to use:**
- Container has crashed (kubectl exec won't work)
- Using distroless/minimal image (no shell, no tools)
- Need debugging tools without rebuilding image
- Debugging network issues
**Basic usage:**
```bash
# Add ephemeral debugging container
kubectl debug -it <pod-name> --image=nicolaka/netshoot
# Share process namespace (see other container processes)
kubectl debug -it <pod-name> --image=busybox --share-processes
# Target specific container
kubectl debug -it <pod-name> --image=busybox --target=app
```
**Recommended debugging images:**
- `nicolaka/netshoot` (~380MB) - Network debugging (curl, dig, tcpdump, netstat)
- `busybox` (~1MB) - Minimal shell and utilities
- `alpine` (~5MB) - Lightweight with package manager
- `ubuntu` (~70MB) - Full environment
**Node debugging:**
```bash
kubectl debug node/<node-name> -it --image=ubuntu
```
**Docker container debugging:**
```bash
docker exec -it <container-id> sh
# If no shell available
docker run -it --pid=container:<container-id> \
--net=container:<container-id> \
busybox sh
```
For detailed container debugging patterns, see `references/container-debugging.md`.
## Production Debugging
### Production Debugging Principles
**Golden rules:**
1. **Minimal performance impact** - Profile overhead, limit scope
2. **No blocking operations** - Use non-breaking techniques
3. **Security-aware** - Avoid logging secrets, PII
4. **Reversible** - Can roll back quickly (feature flags, Git)
5. **Observable** - Structured logging, correlation IDs, tracing
### Safe Production Techniques
**1. Structured Logging**
```python
import logging
import json
logger = logging.getLogger(__name__)
logger.info(json.dumps({
"event": "user_login_failed",
"user_id": user_id,
"error": str(e),
"correlation_id": request_id
}))
```
**2. Correlation IDs (Request Tracing)**
```go
func handleRequest(w http.ResponseWriter, r *http.Request) {
correlationID := r.Header.Get("X-Correlation-ID")
if correlationID == "" {
correlationID = generateUUID()
}
ctx := context.WithValue(r.Context(), "correlationID", correlationID)
log.Printf("[%s] Processing request", correlationID)
}
```
**3. Distributed Tracing (OpenTelemetry)**
```python
from opentelemetry import trace
tracer = trace.get_tracer(__name__)
def process_order(order_id):
with tracer.start_as_current_span("process_order") as span:
span.set_attribute("order.id", order_id)
span.add_event("Order validated")
```
**4. Error Tracking Platforms**
- Sentry - Exception tracking with context
- New Relic - APM with error tracking
- Datadog - Logs, metrics, traces
- Rollbar - Error monitoring
**Production debugging workflow:**
1. **Detect** - Error tracking alert, log spike, metric anomaly
2. **Locate** - Find correlation ID, search logs, view distributed trace
3. **Reproduce** - Try to reproduce in staging with production data (sanitized)
4. **Fix** - Create feature flag, deploy to canary first
5. **Verify** - Check error rates, review logs, monitor traces
For detailed production debugging patterns, see `references/production-debugging.md`.
## Decision Framework
### Which Debugger for Which Language?
| Language | Primary Tool | Installation | Best For |
|----------|-------------|--------------|----------|
| **Python** | pdb | Built-in | Simple scripts, server environments |
| | ipdb | `pip install ipdb` | Enhanced UX, IPython users |
| | debugpy | VS Code extension | IDE integration, remote debugging |
| **Go** | delve | `go install github.com/go-delve/delve/cmd/dlv@latest` | All Go debugging, goroutines |
| **Rust** | rust-lldb | System package | Mac, Linux, MSVC Windows |
| | rust-gdb | System package | Linux, prefer GDB |
| **Node.js** | node --inspect | Built-in | All Node.js debugging, Chrome DevTools |
### Which Technique for Which Scenario?
| Scenario | Recommended Technique | Tools |
|----------|----------------------|-------|
| Local development | Interactive debugger | pdb, delve, lldb, node --inspect |
| Bug in test | Test-specific debugging | pytest --pdb, dlv test, cargo test |
| Remote server | SSH tunnel + remote attach | VS Code Remote, debugpy |
| Container (local) | docker exec -it | sh/bash + debugger |
| Kubernetes pod | Ephemeral container | kubectl debug --image=nicolaka/netshoot |
| Distroless image | Ephemeral container (required) | kubectl debug with busybox/alpine |
| Production issue | Log analysis + error tracking | Structured logs, Sentry, correlation IDs |
| Goroutine deadlock | Goroutine inspection | delve goroutines -t |
| Crashed process | Core dump analysis | gdb core, lldb -c core |
| Distributed failure | Distributed tracing | OpenTelemetry, Jaeger, correlation IDs |
| Race condition | Race detector + debugger | go run -race, cargo test |
### Production Debugging Safety Checklist
Before debugging in production:
- [ ] Will this impact performance? (Profile overhead)
- [ ] Will this block users? (Use non-breaking techniques)
- [ ] Could this expose secrets? (Avoid variable dumps)
- [ ] Is there a rollback plan? (Git branch, feature flag)
- [ ] Have we tried logs first? (Less invasive)
- [ ] Do we have correlation IDs? (Trace requests)
- [ ] Is error tracking enabled? (Sentry, New Relic)
- [ ] Can we reproduce in staging? (Safer environment)
## Common Debugging Workflows
### Workflow 1: Local Development Bug
1. **Insert breakpoint** in code (language-specific)
2. **Start debugger** (dlv debug, rust-lldb, node --inspect-brk)
3. **Execute to breakpoint** (run, continue)
4. **Inspect variables** (print, frame variable)
5. **Step through code** (next, step, finish)
6. **Identify issue** and fix
### Workflow 2: Test Failure Debugging
**Python:**
```bash
pytest --pdb # Drops into pdb on failure
```
**Go:**
```bash
dlv test github.com/user/project/pkg
(dlv) break TestMyFunction
(dlv) continue
```
**Rust:**
```bash
cargo test --no-run
rust-lldb target/debug/deps/myapp-<hash>
(lldb) breakpoint set -n test_name
(lldb) run test_name
```
### Workflow 3: Kubernetes Pod Debugging
**Scenario: Pod with distroless image, network issue**
```bash
# Step 1: Check pod status
kubectl get pod my-app-pod -o wide
# Step 2: Check logs first
kubectl logs my-app-pod
# Step 3: Add ephemeral container if logs insufficient
kubectl debug -it my-app-pod --image=nicolaka/netshoot
# Step 4: Inside debug container, investigate
curl localhost:8080
netstat -tuln
nslookup api.example.com
```
### Workflow 4: Production Error Investigation
**Scenario: API returning 500 errors**
```bash
# Step 1: Check error tracking (Sentry)
# - Find error details, stack trace
# - Copy correlation ID from error report
# Step 2: Search logs for correlation ID
# In log aggregation tool (ELK, Splunk):
# correlation_id:"abc-123-def"
# Step 3: View distributed trace
# In tracing tool (Jaeger, Datadog):
# Search by correlation ID, review span timeline
# Step 4: Reproduce in staging
# Use production data (sanitized) if needed
# Add additional logging if needed
# Step 5: Fix and deploy
# Create feature flag for gradual rollout
# Deploy to canary environment first
# Monitor error rates closely
```
## Additional Resources
For language-specific deep dives:
- `references/python-debugging.md` - pdb, ipdb, pudb, debugpy detailed guide
- `references/go-debugging.md` - Delve CLI, goroutine debugging, conditional breakpoints
- `references/rust-debugging.md` - LLDB vs GDB, ownership debugging, macro debugging
- `references/nodejs-debugging.md` - node --inspect, Chrome DevTools, Docker debugging
For environment-specific patterns:
- `references/container-debugging.md` - kubectl debug, ephemeral containers, node debugging
- `references/production-debugging.md` - Structured logging, correlation IDs, OpenTelemetry, error tracking
For decision support:
- `references/decision-trees.md` - Expanded debugging decision frameworks
For hands-on examples:
- `examples/` - Step-by-step debugging sessions for each language
## Related Skills
For authentication patterns, see the `auth-security` skill.
For performance profiling (complementary to debugging), see the `performance-engineering` skill.
For Kubernetes operations (kubectl debug is part of), see the `kubernetes-operations` skill.
For test debugging strategies, see the `testing-strategies` skill.
For observability setup (logging, tracing), see the `observability` skill.
This skill provides practical, language-specific debugging workflows for Python, Go, Rust, and Node.js, plus container and production-safe techniques. It covers interactive debuggers (pdb, delve, lldb, node --inspect), Kubernetes ephemeral containers, remote debugging, and production approaches using correlation IDs and distributed tracing. Use it to set breakpoints, inspect threads/goroutines, debug pods, or investigate production incidents safely.
I guide you through the right debugger and commands for each language, show how to attach to running processes or tests, and describe container/Kubernetes patterns like kubectl debug with ephemeral containers. For production incidents I explain minimal-impact diagnostics: structured logging, correlation IDs, OpenTelemetry traces, and a safe workflow for reproduce-fix-verify with canary rollouts. Each workflow includes concrete commands and a decision framework to pick tools per scenario.
Can I safely debug in production?
Yes—if you prioritize low-impact techniques: structured logs, sampled traces, non-blocking diagnostics, feature flags, and a rollback plan. Avoid printing secrets or stopping threads.
What if my container image is distroless and has no shell?
Use kubectl debug to add an ephemeral container (busybox, alpine, netshoot) or run a container with --pid and --net namespaces shared to inspect the target.
How do I choose a debugger for concurrency issues in Go?
Use Delve (dlv). It lists goroutines, shows stack traces (goroutines -t), and lets you switch context to inspect specific goroutines.
How to correlate logs across services?
Inject a correlation ID into request headers, propagate it through contexts, include it in structured logs, and use tracing tools (OpenTelemetry, Jaeger) to stitch spans together.