home / skills / alinaqi / claude-bootstrap / database-schema
This skill ensures database code uses schema-verified columns and generated types to prevent runtime errors.
npx playbooks add skill alinaqi/claude-bootstrap --skill database-schemaReview the files below or copy the command above to add this skill to your agents.
---
name: database-schema
description: Schema awareness - read before coding, type generation, prevent column errors
---
# Database Schema Awareness Skill
*Load with: base.md + [your database skill]*
**Problem:** Claude forgets schema details mid-session - wrong column names, missing fields, incorrect types. TDD catches this at runtime, but we can prevent it earlier.
---
## Core Rule: Read Schema Before Writing Database Code
**MANDATORY: Before writing ANY code that touches the database:**
```
┌─────────────────────────────────────────────────────────────┐
│ 1. READ the schema file (see locations below) │
│ 2. VERIFY columns/types you're about to use exist │
│ 3. REFERENCE schema in your response when writing queries │
│ 4. TYPE-CHECK using generated types (Drizzle/Prisma/etc) │
└─────────────────────────────────────────────────────────────┘
```
**If schema file doesn't exist → CREATE IT before proceeding.**
---
## Schema File Locations (By Stack)
| Stack | Schema Location | Type Generation |
|-------|-----------------|-----------------|
| **Drizzle** | `src/db/schema.ts` or `drizzle/schema.ts` | Built-in TypeScript |
| **Prisma** | `prisma/schema.prisma` | `npx prisma generate` |
| **Supabase** | `supabase/migrations/*.sql` + types | `supabase gen types typescript` |
| **SQLAlchemy** | `app/models/*.py` or `src/models.py` | Pydantic models |
| **TypeORM** | `src/entities/*.ts` | Decorators = types |
| **Raw SQL** | `schema.sql` or `migrations/` | Manual types required |
### Schema Reference File (Recommended)
Create `_project_specs/schema-reference.md` for quick lookup:
```markdown
# Database Schema Reference
*Auto-generated or manually maintained. Claude: READ THIS before database work.*
## Tables
### users
| Column | Type | Nullable | Default | Notes |
|--------|------|----------|---------|-------|
| id | uuid | NO | gen_random_uuid() | PK |
| email | text | NO | - | Unique |
| name | text | YES | - | Display name |
| created_at | timestamptz | NO | now() | - |
| updated_at | timestamptz | NO | now() | - |
### orders
| Column | Type | Nullable | Default | Notes |
|--------|------|----------|---------|-------|
| id | uuid | NO | gen_random_uuid() | PK |
| user_id | uuid | NO | - | FK → users.id |
| status | text | NO | 'pending' | enum: pending/paid/shipped/delivered |
| total_cents | integer | NO | - | Amount in cents |
| created_at | timestamptz | NO | now() | - |
## Relationships
- users 1:N orders (user_id)
## Enums
- order_status: pending, paid, shipped, delivered
```
---
## Pre-Code Checklist (Database Work)
Before writing any database code, Claude MUST:
```markdown
### Schema Verification Checklist
- [ ] Read schema file: `[path to schema]`
- [ ] Columns I'm using exist: [list columns]
- [ ] Types match my code: [list type mappings]
- [ ] Relationships are correct: [list FKs]
- [ ] Nullable fields handled: [list nullable columns]
```
**Example in practice:**
```markdown
### Schema Verification for TODO-042 (Add order history endpoint)
- [x] Read schema: `src/db/schema.ts`
- [x] Columns exist: orders.id, orders.user_id, orders.status, orders.total_cents, orders.created_at
- [x] Types: id=uuid→string, total_cents=integer→number, status=text→OrderStatus enum
- [x] Relationships: orders.user_id → users.id (many-to-one)
- [x] Nullable: none of these columns are nullable
```
---
## Type Generation Commands
### Drizzle (TypeScript)
```typescript
// Schema defines types automatically
// src/db/schema.ts
import { pgTable, uuid, text, integer, timestamp } from 'drizzle-orm/pg-core';
export const users = pgTable('users', {
id: uuid('id').primaryKey().defaultRandom(),
email: text('email').notNull().unique(),
name: text('name'),
createdAt: timestamp('created_at').notNull().defaultNow(),
});
export const orders = pgTable('orders', {
id: uuid('id').primaryKey().defaultRandom(),
userId: uuid('user_id').notNull().references(() => users.id),
status: text('status').notNull().default('pending'),
totalCents: integer('total_cents').notNull(),
createdAt: timestamp('created_at').notNull().defaultNow(),
});
// Inferred types - USE THESE
export type User = typeof users.$inferSelect;
export type NewUser = typeof users.$inferInsert;
export type Order = typeof orders.$inferSelect;
export type NewOrder = typeof orders.$inferInsert;
```
### Prisma
```prisma
// prisma/schema.prisma
model User {
id String @id @default(uuid())
email String @unique
name String?
orders Order[]
createdAt DateTime @default(now()) @map("created_at")
@@map("users")
}
model Order {
id String @id @default(uuid())
userId String @map("user_id")
user User @relation(fields: [userId], references: [id])
status String @default("pending")
totalCents Int @map("total_cents")
createdAt DateTime @default(now()) @map("created_at")
@@map("orders")
}
```
```bash
# Generate types after schema changes
npx prisma generate
```
### Supabase
```bash
# Generate TypeScript types from live database
supabase gen types typescript --local > src/types/database.ts
# Or from remote
supabase gen types typescript --project-id your-project-id > src/types/database.ts
```
```typescript
// Use generated types
import { Database } from '@/types/database';
type User = Database['public']['Tables']['users']['Row'];
type NewUser = Database['public']['Tables']['users']['Insert'];
type Order = Database['public']['Tables']['orders']['Row'];
```
### SQLAlchemy (Python)
```python
# app/models/user.py
from sqlalchemy import Column, String, DateTime
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.sql import func
from app.db import Base
import uuid
class User(Base):
__tablename__ = "users"
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
email = Column(String, nullable=False, unique=True)
name = Column(String, nullable=True)
created_at = Column(DateTime(timezone=True), server_default=func.now())
# Relationships
orders = relationship("Order", back_populates="user")
```
```python
# app/schemas/user.py - Pydantic for API validation
from pydantic import BaseModel, EmailStr
from uuid import UUID
from datetime import datetime
class UserBase(BaseModel):
email: EmailStr
name: str | None = None
class UserCreate(UserBase):
pass
class User(UserBase):
id: UUID
created_at: datetime
class Config:
from_attributes = True
```
---
## Schema-Aware TDD Workflow
Extend the standard TDD workflow for database work:
```
┌─────────────────────────────────────────────────────────────┐
│ 0. SCHEMA: Read and verify schema before anything else │
│ └─ Read schema file │
│ └─ Complete Schema Verification Checklist │
│ └─ Note any missing columns/tables needed │
├─────────────────────────────────────────────────────────────┤
│ 1. RED: Write tests that use correct column names │
│ └─ Import generated types │
│ └─ Use type-safe queries in tests │
│ └─ Tests should fail on logic, NOT schema errors │
├─────────────────────────────────────────────────────────────┤
│ 2. GREEN: Implement with type-safe queries │
│ └─ Use ORM types, not raw strings │
│ └─ TypeScript/mypy catches column mismatches │
├─────────────────────────────────────────────────────────────┤
│ 3. VALIDATE: Type check catches schema drift │
│ └─ tsc --noEmit / mypy catches wrong columns │
│ └─ Tests validate runtime behavior │
└─────────────────────────────────────────────────────────────┘
```
---
## Common Schema Mistakes (And How to Prevent)
| Mistake | Example | Prevention |
|---------|---------|------------|
| Wrong column name | `user.userName` vs `user.name` | Read schema, use generated types |
| Wrong type | `totalCents` as string | Type generation catches this |
| Missing nullable check | `user.name!` when nullable | Schema shows nullable fields |
| Wrong FK relationship | `order.userId` vs `order.user_id` | Check schema column names |
| Missing column | Using `user.avatar` that doesn't exist | Read schema before coding |
| Wrong enum value | `status: 'complete'` vs `'completed'` | Document enums in schema reference |
### Type-Safe Query Examples
**Drizzle (catches errors at compile time):**
```typescript
// ✅ Correct - uses schema-defined columns
const user = await db.select().from(users).where(eq(users.email, email));
// ❌ Wrong - TypeScript error: 'userName' doesn't exist
const user = await db.select().from(users).where(eq(users.userName, email));
```
**Prisma (catches errors at compile time):**
```typescript
// ✅ Correct
const user = await prisma.user.findUnique({ where: { email } });
// ❌ Wrong - TypeScript error
const user = await prisma.user.findUnique({ where: { userName: email } });
```
**Raw SQL (NO protection - avoid):**
```typescript
// ❌ Dangerous - no type checking, easy to get wrong
const result = await db.query('SELECT * FROM users WHERE user_name = $1', [email]);
// Should be 'email' not 'user_name' - won't catch until runtime
```
---
## Migration Workflow
When schema changes are needed:
```
┌─────────────────────────────────────────────────────────────┐
│ 1. Update schema file (Drizzle/Prisma/SQLAlchemy) │
├─────────────────────────────────────────────────────────────┤
│ 2. Generate migration │
│ └─ Drizzle: npx drizzle-kit generate │
│ └─ Prisma: npx prisma migrate dev --name add_column │
│ └─ Supabase: supabase migration new add_column │
├─────────────────────────────────────────────────────────────┤
│ 3. Regenerate types │
│ └─ Prisma: npx prisma generate │
│ └─ Supabase: supabase gen types typescript │
├─────────────────────────────────────────────────────────────┤
│ 4. Update schema-reference.md │
├─────────────────────────────────────────────────────────────┤
│ 5. Run type check - find all broken code │
│ └─ npm run typecheck │
├─────────────────────────────────────────────────────────────┤
│ 6. Fix type errors, update tests, run full validation │
└─────────────────────────────────────────────────────────────┘
```
---
## Session Start Protocol
**When starting a session that involves database work:**
1. Read schema file immediately
2. Read `_project_specs/schema-reference.md` if exists
3. Note in session state what tables/columns are relevant
4. Reference schema explicitly when writing code
**Session state example:**
```markdown
## Current Session - Database Context
**Schema read:** ✓ src/db/schema.ts
**Tables in scope:** users, orders, order_items
**Key columns:**
- users: id, email, name, created_at
- orders: id, user_id, status, total_cents
- order_items: id, order_id, product_id, quantity, price_cents
```
---
## Anti-Patterns
- ❌ **Guessing column names** - Always read schema first
- ❌ **Using raw SQL strings** - Use ORM with type generation
- ❌ **Hardcoding without verification** - Check schema before using any column
- ❌ **Ignoring type errors** - Schema drift shows up as type errors
- ❌ **Not regenerating types** - After migration, always regenerate
- ❌ **Assuming nullable** - Check schema for nullable columns
---
## Checklist
### Setup
- [ ] Schema file exists in standard location
- [ ] Type generation configured
- [ ] `_project_specs/schema-reference.md` created
- [ ] Types regenerate on schema change
### Per-Task
- [ ] Schema read before writing database code
- [ ] Schema Verification Checklist completed
- [ ] Using generated types (not raw strings)
- [ ] Type check passes (catches column errors)
- [ ] Tests use correct schema
This skill enforces schema awareness before any database coding. It ensures the agent reads the project schema, verifies columns and types, and uses generated types to prevent column/name/type errors. The goal is to catch schema drift early with a reproducible, type-safe workflow.
Before producing or modifying code that touches the database, the agent reads designated schema files (Drizzle, Prisma, Supabase, SQLAlchemy, TypeORM, or raw SQL locations). It runs a short verification checklist: confirm columns exist, map DB types to language types, note nullability and relationships, and reference or regenerate generated types. The agent then references the schema explicitly in responses and uses type-safe queries or ORM types rather than raw SQL strings.
What if the project has no schema files yet?
Create the appropriate schema file for the stack (Prisma, Drizzle, SQLAlchemy, etc.) and register it in the project specs before writing DB code.
Can I use raw SQL at all?
Raw SQL is allowed but risky—prefer ORM/typed queries. If raw SQL is necessary, manually maintain a schema reference and include explicit checks in tests.