home / skills / aj-geddes / useful-ai-prompts / model-deployment
npx playbooks add skill aj-geddes/useful-ai-prompts --skill model-deploymentReview the files below or copy the command above to add this skill to your agents.
---
name: Model Deployment
description: Deploy machine learning models to production using Flask, FastAPI, Docker, cloud platforms (AWS, GCP, Azure), and model serving frameworks
---
# Model Deployment
## Overview
Model deployment is the process of taking a trained machine learning model and making it available for production use through APIs, web services, or batch processing systems.
## When to Use
- When productionizing trained models for real-world inference and predictions
- When building REST APIs or web services for model serving
- When scaling predictions to serve multiple users or applications
- When deploying models to cloud platforms, edge devices, or containers
- When implementing CI/CD pipelines for ML model updates
- When creating batch processing systems for large-scale predictions
## Deployment Approaches
- **REST APIs**: Flask, FastAPI for synchronous inference
- **Batch Processing**: Scheduled jobs for large-scale predictions
- **Real-time Streaming**: Kafka, Spark Streaming for continuous data
- **Serverless**: AWS Lambda, Google Cloud Functions
- **Edge Deployment**: TensorFlow Lite, ONNX for edge devices
- **Model Serving**: TensorFlow Serving, Seldon Core, BentoML
## Key Considerations
- **Model Format**: Pickle, SavedModel, ONNX, PMML
- **Scalability**: Load balancing, auto-scaling
- **Latency**: Response time requirements
- **Monitoring**: Model drift, performance metrics
- **Versioning**: Multiple model versions in production
## Python Implementation
```python
import numpy as np
import pandas as pd
import pickle
import json
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_classification
import joblib
# FastAPI for REST API
from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
import uvicorn
# For model serving
import mlflow.pyfunc
import mlflow.sklearn
# Docker and deployment
import logging
import time
from typing import List, Dict
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
print("=== 1. Train and Save Model ===")
# Create dataset
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train model
model = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
model.fit(X_scaled, y)
# Save model and preprocessing
model_path = '/tmp/model.pkl'
scaler_path = '/tmp/scaler.pkl'
joblib.dump(model, model_path)
joblib.dump(scaler, scaler_path)
print(f"Model saved to {model_path}")
print(f"Scaler saved to {scaler_path}")
# 2. Model Serving Class
print("\n=== 2. Model Serving Class ===")
class ModelPredictor:
def __init__(self, model_path, scaler_path):
self.model = joblib.load(model_path)
self.scaler = joblib.load(scaler_path)
self.load_time = time.time()
self.predictions_count = 0
logger.info("Model loaded successfully")
def predict(self, features: List[List[float]]) -> Dict:
try:
X = np.array(features)
X_scaled = self.scaler.transform(X)
predictions = self.model.predict(X_scaled)
probabilities = self.model.predict_proba(X_scaled)
self.predictions_count += len(X)
return {
'predictions': predictions.tolist(),
'probabilities': probabilities.tolist(),
'count': len(X),
'timestamp': time.time()
}
except Exception as e:
logger.error(f"Prediction error: {str(e)}")
raise
def health_check(self) -> Dict:
return {
'status': 'healthy',
'uptime': time.time() - self.load_time,
'predictions': self.predictions_count
}
# Initialize predictor
predictor = ModelPredictor(model_path, scaler_path)
# 3. FastAPI Application
print("\n=== 3. FastAPI Application ===")
app = FastAPI(
title="ML Model API",
description="Production ML model serving API",
version="1.0.0"
)
class PredictionRequest(BaseModel):
features: List[List[float]] = Field(..., example=[[1.0, 2.0, 3.0]])
class PredictionResponse(BaseModel):
predictions: List[int]
probabilities: List[List[float]]
count: int
timestamp: float
class HealthResponse(BaseModel):
status: str
uptime: float
predictions: int
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
return predictor.health_check()
@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest):
"""Make predictions"""
try:
result = predictor.predict(request.features)
return result
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
@app.post("/predict-batch")
async def predict_batch(requests: List[PredictionRequest], background_tasks: BackgroundTasks):
"""Batch prediction with background processing"""
all_features = []
for req in requests:
all_features.extend(req.features)
result = predictor.predict(all_features)
background_tasks.add_task(logger.info, f"Batch prediction processed: {result['count']} samples")
return result
@app.get("/stats")
async def get_stats():
"""Get model statistics"""
return {
'model_type': type(predictor.model).__name__,
'n_estimators': predictor.model.n_estimators,
'max_depth': predictor.model.max_depth,
'feature_importance': predictor.model.feature_importances_.tolist(),
'total_predictions': predictor.predictions_count
}
# 4. Dockerfile template
print("\n=== 4. Dockerfile Template ===")
dockerfile_content = '''FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY model.pkl .
COPY scaler.pkl .
COPY app.py .
EXPOSE 8000
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
'''
print("Dockerfile content:")
print(dockerfile_content)
# 5. Requirements file
print("\n=== 5. Requirements.txt ===")
requirements = """fastapi==0.104.1
uvicorn[standard]==0.24.0
numpy==1.24.0
pandas==2.1.0
scikit-learn==1.3.2
joblib==1.3.2
pydantic==2.5.0
mlflow==2.8.1
"""
print("Requirements:")
print(requirements)
# 6. Docker Compose for deployment
print("\n=== 6. Docker Compose Template ===")
docker_compose = '''version: '3.8'
services:
ml-api:
build: .
ports:
- "8000:8000"
environment:
- LOG_LEVEL=info
- WORKERS=4
restart: unless-stopped
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 10s
timeout: 5s
retries: 3
ml-monitor:
image: prom/prometheus:latest
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
command:
- "--config.file=/etc/prometheus/prometheus.yml"
ml-dashboard:
image: grafana/grafana:latest
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_PASSWORD=admin
volumes:
- ./grafana/dashboards:/etc/grafana/provisioning/dashboards
'''
print("Docker Compose content:")
print(docker_compose)
# 7. Testing the API
print("\n=== 7. Testing the API ===")
def test_predictor():
# Test single prediction
test_features = [[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1]]
result = predictor.predict(test_features)
print(f"Prediction result: {result}")
# Health check
health = predictor.health_check()
print(f"Health status: {health}")
# Batch predictions
batch_features = [
[1.0] * 20,
[2.0] * 20,
[3.0] * 20,
]
batch_result = predictor.predict(batch_features)
print(f"Batch prediction: {batch_result['count']} samples processed")
test_predictor()
# 8. Model versioning and registry
print("\n=== 8. Model Registry with MLflow ===")
# Log model to MLflow
with mlflow.start_run():
mlflow.sklearn.log_model(model, "model")
mlflow.log_param("max_depth", 10)
mlflow.log_param("n_estimators", 100)
mlflow.log_metric("accuracy", 0.95)
model_uri = "runs:/" + mlflow.active_run().info.run_id + "/model"
print(f"Model logged to MLflow: {model_uri}")
# 9. Deployment monitoring code
print("\n=== 9. Monitoring Setup ===")
class ModelMonitor:
def __init__(self):
self.predictions = []
self.latencies = []
def log_prediction(self, features, prediction, latency):
self.predictions.append({
'timestamp': time.time(),
'features_mean': np.mean(features),
'prediction': prediction,
'latency_ms': latency * 1000
})
def check_model_drift(self):
if len(self.predictions) < 100:
return {'drift_detected': False}
recent_predictions = [p['prediction'] for p in self.predictions[-100:]]
historical_mean = np.mean([p['prediction'] for p in self.predictions[:-100]])
recent_mean = np.mean(recent_predictions)
drift = abs(recent_mean - historical_mean) > 0.1
return {
'drift_detected': drift,
'historical_mean': float(historical_mean),
'recent_mean': float(recent_mean),
'threshold': 0.1
}
def get_stats(self):
if not self.latencies:
return {}
return {
'avg_latency_ms': np.mean(self.latencies) * 1000,
'p95_latency_ms': np.percentile(self.latencies, 95) * 1000,
'p99_latency_ms': np.percentile(self.latencies, 99) * 1000,
'total_predictions': len(self.predictions)
}
monitor = ModelMonitor()
print("\nDeployment setup completed!")
print("To run FastAPI server: uvicorn app:app --reload")
```
## Deployment Checklist
- Model format and serialization
- Input/output validation
- Error handling and logging
- Authentication and security
- Rate limiting and throttling
- Health check endpoints
- Monitoring and alerting
- Version management
- Rollback procedures
## Cloud Deployment Options
- **AWS**: SageMaker, Lambda, EC2
- **GCP**: Vertex AI, Cloud Run, App Engine
- **Azure**: Machine Learning, App Service
- **Kubernetes**: Self-managed on-premises
## Performance Optimization
- Model quantization for smaller size
- Caching predictions
- Batch processing
- GPU acceleration
- Request pooling
## Deliverables
- Deployed model endpoint
- API documentation
- Docker configuration
- Monitoring dashboard
- Deployment guide
- Performance benchmarks
- Scaling recommendations