home / skills / aj-geddes / useful-ai-prompts / memory-optimization
This skill profiles and optimizes application memory usage to detect leaks, reduce footprint, and boost performance.
npx playbooks add skill aj-geddes/useful-ai-prompts --skill memory-optimizationReview the files below or copy the command above to add this skill to your agents.
---
name: memory-optimization
description: Profile and optimize application memory usage. Identify memory leaks, reduce memory footprint, and improve efficiency for better performance and reliability.
---
# Memory Optimization
## Overview
Memory optimization improves application performance, stability, and reduces infrastructure costs. Efficient memory usage is critical for scalability.
## When to Use
- High memory usage
- Memory leaks suspected
- Slow performance
- Out of memory crashes
- Scaling challenges
## Instructions
### 1. **Memory Profiling**
```javascript
// Browser memory profiling
// Check memory usage
performance.memory: {
jsHeapSizeLimit: 2190000000, // Max available
totalJSHeapSize: 1300000000, // Total allocated
usedJSHeapSize: 950000000 // Currently used
}
// React DevTools Profiler
- Open React DevTools → Profiler
- Record interaction
- See component renders and time
- Identify unnecessary renders
// Chrome DevTools
1. Open DevTools → Memory
2. Take heap snapshot
3. Compare before/after
4. Look for retained objects
5. Check retained sizes
// Node.js profiling
node --inspect app.js
// Open chrome://inspect
// Take heap snapshots
// Compare growth over time
```
### 2. **Memory Leak Detection**
```python
# Identify and fix memory leaks
class MemoryLeakDebug:
def identify_leaks(self):
"""Common patterns"""
return {
'circular_references': {
'problem': 'Objects reference each other, prevent GC',
'example': 'parent.child = child; child.parent = parent',
'solution': 'Use weak references or cleaner code'
},
'event_listeners': {
'problem': 'Listeners not removed',
'example': 'element.addEventListener(...) without removeEventListener',
'solution': 'Always remove listeners on cleanup'
},
'timers': {
'problem': 'setInterval/setTimeout not cleared',
'example': 'setInterval(() => {}, 1000) never clearInterval',
'solution': 'Store ID and clear on unmount'
},
'cache_unbounded': {
'problem': 'Cache grows without bounds',
'example': 'cache[key] = value (never deleted)',
'solution': 'Implement TTL or size limits'
},
'dom_references': {
'problem': 'Removed DOM elements still referenced',
'example': 'var x = document.getElementById("removed")',
'solution': 'Clear references after removal'
}
}
def detect_in_browser(self):
"""JavaScript detection"""
return """
// Monitor memory growth
setInterval(() => {
const mem = performance.memory;
const used = mem.usedJSHeapSize / 1000000;
console.log(`Memory: ${used.toFixed(1)} MB`);
}, 1000);
// If grows over time without plateau = leak
"""
```
### 3. **Optimization Techniques**
```yaml
Memory Optimization:
Object Pooling:
Pattern: Reuse objects instead of creating new
Example: GameObject pool in games
Benefits: Reduce GC, stable memory
Trade-off: Complexity
Lazy Loading:
Pattern: Load data only when needed
Example: Infinite scroll
Benefits: Lower peak memory
Trade-off: Complexity
Pagination:
Pattern: Process data in chunks
Example: 1M records → 1K per page
Benefits: Constant memory
Trade-off: More requests
Stream Processing:
Pattern: Process one item at a time
Example: fs.createReadStream()
Benefits: Constant memory for large data
Trade-off: Slower if cached
Memoization:
Pattern: Cache expensive calculations
Benefits: Faster, reuse results
Trade-off: Memory for speed
---
Framework-Specific:
React:
- useMemo for expensive calculations
- useCallback to avoid creating functions
- Code splitting / lazy loading
- Windowing for long lists (react-window)
Node.js:
- Stream instead of loadFile
- Limit cluster workers
- Set heap size: --max-old-space-size=4096
- Monitor with clinic.js
---
GC (Garbage Collection):
Minimize:
- Object creation
- Large allocations
- Frequent new objects
- String concatenation
Example (Bad):
let result = "";
for (let i = 0; i < 1000000; i++) {
result += i.toString() + ",";
// Creates new string each iteration
}
Example (Good):
const result = Array.from(
{length: 1000000},
(_, i) => i.toString()
).join(",");
// Single allocation
```
### 4. **Monitoring & Targets**
```yaml
Memory Targets:
Web App:
Initial: <10MB
After use: <50MB
Peak: <100MB
Leak check: Should plateau
Node.js API:
Per-process: 100-500MB
Cluster total: 1-4GB
Heap size: Monitor vs available RAM
Mobile:
Initial: <20MB
Working: <50MB
Peak: <100MB (device dependent)
---
Tools:
Browser:
- Chrome DevTools Memory
- Firefox DevTools Memory
- React DevTools Profiler
- Redux DevTools
Node.js:
- node --inspect
- clinic.js
- nodemon --exec with monitoring
- New Relic / DataDog
Monitoring:
- Application Performance Monitoring (APM)
- Prometheus + Grafana
- CloudWatch
- New Relic
---
Checklist:
[ ] Profile baseline memory
[ ] Identify heavy components
[ ] Remove event listeners on cleanup
[ ] Clear timers on cleanup
[ ] Implement lazy loading
[ ] Use pagination for large lists
[ ] Monitor memory trends
[ ] Set up GC monitoring
[ ] Test with production data volume
[ ] Stress test for leaks
[ ] Establish memory budget
[ ] Set up alerts
```
## Key Points
- Take baseline memory measurements
- Use profilers to identify issues
- Remove listeners and timers on cleanup
- Implement streaming for large data
- Use lazy loading and pagination
- Monitor GC pause times
- Set heap size appropriate for workload
- Object pooling for frequent allocations
- Regular memory testing with real data
- Alert on memory growth trends
This skill profiles and optimizes application memory usage to identify leaks, lower memory footprint, and improve runtime efficiency. It combines profiling techniques, leak detection patterns, and practical optimization patterns to make apps more stable and cost-effective. Use it to reduce crashes, improve latency, and scale reliably.
The skill runs targeted memory profiling in browsers and Node.js to collect heap snapshots, allocation trends, and retained sizes. It highlights common leak sources—event listeners, timers, caches, DOM references, and circular references—and maps them to concrete fixes. It also recommends optimization patterns like streaming, pagination, lazy loading, object pooling, and GC-friendly coding, plus monitoring and alerting targets.
How do I know if memory growth is a leak or normal usage?
Track memory over time under realistic load; leaks show unbounded growth without plateauing. Use heap snapshots to locate objects that keep getting retained.
What quick fixes reduce GC pressure?
Avoid frequent small allocations and string concatenation in hot loops, reuse objects where feasible, and prefer single large allocations (e.g., join arrays) over repeated concatenation.