home / skills / aj-geddes / useful-ai-prompts / funnel-analysis

funnel-analysis skill

/skills/funnel-analysis

This skill analyzes user funnels, identifies drop-offs, and provides actionable optimization insights to boost conversion rates and user flow efficiency.

npx playbooks add skill aj-geddes/useful-ai-prompts --skill funnel-analysis

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
11.1 KB
---
name: Funnel Analysis
description: Analyze user conversion funnels, identify drop-off points, and optimize conversion rates for conversion optimization and user flow analysis
---

# Funnel Analysis

## Overview

Funnel analysis tracks user progression through sequential steps, identifying where users drop off and optimizing each stage for better conversion.

## When to Use

- When optimizing user conversion paths and improving conversion rates
- When identifying bottlenecks and drop-off points in user flows
- When comparing performance across different segments or traffic sources
- When measuring product feature adoption or onboarding effectiveness
- When improving customer journey efficiency and user experience
- When A/B testing different funnel configurations or designs

## Funnel Structure

- **Stage 1**: Initial entry (landing page, app open)
- **Stage 2-N**: Intermediate steps (signup, selection, payment)
- **Final Stage**: Goal completion (purchase, subscription, sign-up)
- **Drop-off**: Users not progressing to next stage
- **Conversion Rate**: % progressing to next step

## Key Metrics

- **Drop-off Rate**: % leaving at each stage
- **Conversion Rate**: % progressing per stage
- **Funnel Efficiency**: Overall conversion (Stage 1 to Final)
- **Friction Score**: Identifying problem areas

## Implementation with Python

```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Create sample funnel data
np.random.seed(42)

funnel_stages = ['Landing Page', 'Sign Up', 'Product Selection', 'Add to Cart', 'Checkout', 'Payment', 'Confirmation']

# Simulate user journey (progressive drop-off)
data = []
users_at_stage = 100000
for i, stage in enumerate(funnel_stages):
    # Progressively lower retention
    drop_off_rate = 0.15 + (i * 0.05)  # Increasing drop-off
    users_at_stage = int(users_at_stage * (1 - drop_off_rate))

    for _ in range(users_at_stage):
        data.append({
            'user_id': f'user_{np.random.randint(0, 1000000)}',
            'stage': stage,
            'timestamp': np.random.randint(0, 365),
        })

df = pd.DataFrame(data)

# 1. Funnel Counts
funnel_counts = df['stage'].value_counts().reindex(funnel_stages)
print("Funnel Counts by Stage:")
print(funnel_counts)

# 2. Funnel Metrics
funnel_metrics = pd.DataFrame({
    'Stage': funnel_stages,
    'Users': funnel_counts.values,
})

funnel_metrics['Drop-off'] = funnel_metrics['Users'].shift(1) - funnel_metrics['Users']
funnel_metrics['Drop-off %'] = (funnel_metrics['Drop-off'] / funnel_metrics['Users'].shift(1) * 100).round(2)
funnel_metrics['Conversion %'] = (funnel_metrics['Users'] / funnel_metrics['Users'].iloc[0] * 100).round(2)

print("\nFunnel Metrics:")
print(funnel_metrics)

# 3. Visualization - Funnel Chart
fig, axes = plt.subplots(1, 2, figsize=(14, 6))

# Traditional funnel visualization
ax = axes[0]
colors = plt.cm.RdYlGn_r(np.linspace(0.3, 0.7, len(funnel_metrics)))

for idx, (stage, users) in enumerate(zip(funnel_metrics['Stage'], funnel_metrics['Users'])):
    # Create trapezoid-like bars
    width = users / funnel_metrics['Users'].max()
    y_pos = len(funnel_metrics) - idx - 1
    ax.barh(y_pos, width, left=(1 - width) / 2, height=0.6, color=colors[idx], edgecolor='black')
    ax.text(-0.05, y_pos, stage, ha='right', va='center', fontsize=10)
    ax.text(0.5, y_pos, f"{users:,}", ha='center', va='center', fontsize=9, fontweight='bold')

ax.set_xlim(0, 1)
ax.set_ylim(-0.5, len(funnel_metrics) - 0.5)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title('Conversion Funnel')

# Step-by-step conversion
ax2 = axes[1]
x_pos = np.arange(len(funnel_stages))
colors2 = plt.cm.Spectral(np.linspace(0, 1, len(funnel_stages)))

bars = ax2.bar(x_pos, funnel_metrics['Users'], color=colors2, edgecolor='black', alpha=0.7)

# Add value labels
for i, (bar, users, conv) in enumerate(zip(bars, funnel_metrics['Users'], funnel_metrics['Conversion %'])):
    height = bar.get_height()
    ax2.text(bar.get_x() + bar.get_width() / 2., height,
             f'{int(users):,}\n({conv:.1f}%)',
             ha='center', va='bottom', fontsize=9)

ax2.set_ylabel('User Count')
ax2.set_title('Users by Stage')
ax2.set_xticks(x_pos)
ax2.set_xticklabels(funnel_stages, rotation=45, ha='right')
ax2.grid(True, alpha=0.3, axis='y')

plt.tight_layout()
plt.show()

# 4. Drop-off Analysis
fig, ax = plt.subplots(figsize=(12, 6))

# Filter out first stage (no drop-off from before)
drop_off_data = funnel_metrics[1:].copy()
drop_off_data = drop_off_data[drop_off_data['Drop-off'] > 0]

colors_drop = ['#d62728' if x > drop_off_data['Drop-off'].median() else '#2ca02c'
               for x in drop_off_data['Drop-off']]

bars = ax.barh(drop_off_data['Stage'], drop_off_data['Drop-off %'], color=colors_drop, edgecolor='black')

# Add value labels
for i, (bar, drop_pct) in enumerate(zip(bars, drop_off_data['Drop-off %'])):
    width = bar.get_width()
    ax.text(width, bar.get_y() + bar.get_height() / 2.,
            f'{drop_pct:.1f}%',
            ha='left', va='center', fontsize=10, fontweight='bold')

ax.set_xlabel('Drop-off Rate (%)')
ax.set_title('Drop-off Rates by Stage')
ax.grid(True, alpha=0.3, axis='x')

plt.tight_layout()
plt.show()

# 5. Funnel Efficiency Matrix
efficiency_matrix = funnel_metrics[['Stage', 'Conversion %']].copy()
print("\nFunnel Efficiency (% of Initial Users):")
print(efficiency_matrix)

# 6. Stage-to-stage conversion
fig, ax = plt.subplots(figsize=(12, 6))

stage_conversion = []
for i in range(len(funnel_metrics) - 1):
    conversion = (funnel_metrics.iloc[i + 1]['Users'] / funnel_metrics.iloc[i]['Users'] * 100)
    stage_conversion.append({
        'Transition': f"{funnel_metrics.iloc[i]['Stage']}\n→ {funnel_metrics.iloc[i+1]['Stage']}",
        'Conversion %': conversion
    })

stage_conv_df = pd.DataFrame(stage_conversion)
colors_stage = ['#2ca02c' if x > 80 else '#ff7f0e' if x > 60 else '#d62728'
                for x in stage_conv_df['Conversion %']]

bars = ax.bar(range(len(stage_conv_df)), stage_conv_df['Conversion %'], color=colors_stage, edgecolor='black')

# Add value labels
for bar, conv in zip(bars, stage_conv_df['Conversion %']):
    height = bar.get_height()
    ax.text(bar.get_x() + bar.get_width() / 2., height,
            f'{conv:.1f}%',
            ha='center', va='bottom', fontsize=10, fontweight='bold')

ax.set_ylabel('Conversion Rate (%)')
ax.set_title('Stage-to-Stage Conversion Rates')
ax.set_xticks(range(len(stage_conv_df)))
ax.set_xticklabels(stage_conv_df['Transition'], fontsize=9)
ax.set_ylim([0, 105])
ax.axhline(y=80, color='green', linestyle='--', alpha=0.5, label='Good (80%+)')
ax.axhline(y=60, color='orange', linestyle='--', alpha=0.5, label='Acceptable (60%+)')
ax.legend()
ax.grid(True, alpha=0.3, axis='y')

plt.tight_layout()
plt.show()

# 7. Funnel by Segment (e.g., traffic source)
np.random.seed(42)
df['traffic_source'] = np.random.choice(['Organic', 'Paid', 'Direct'], len(df))

# Create funnel for each segment
fig, axes = plt.subplots(1, 3, figsize=(15, 6))

for idx, source in enumerate(['Organic', 'Paid', 'Direct']):
    df_segment = df[df['traffic_source'] == source]
    segment_counts = df_segment['stage'].value_counts().reindex(funnel_stages)

    segment_metrics = pd.DataFrame({
        'Stage': funnel_stages,
        'Users': segment_counts.values,
    })
    segment_metrics['Conversion %'] = (segment_metrics['Users'] / segment_metrics['Users'].iloc[0] * 100).round(2)

    ax = axes[idx]
    x_pos = np.arange(len(funnel_stages))
    bars = ax.bar(x_pos, segment_metrics['Users'], color='steelblue', edgecolor='black', alpha=0.7)

    for bar, conv in zip(bars, segment_metrics['Conversion %']):
        height = bar.get_height()
        ax.text(bar.get_x() + bar.get_width() / 2., height,
                f'{conv:.1f}%',
                ha='center', va='bottom', fontsize=8)

    ax.set_title(f'Funnel: {source}')
    ax.set_ylabel('Users')
    ax.set_xticks(x_pos)
    ax.set_xticklabels(funnel_stages, rotation=45, ha='right', fontsize=8)
    ax.grid(True, alpha=0.3, axis='y')

plt.tight_layout()
plt.show()

# 8. Comparison table of segments
print("\nFunnel Comparison by Traffic Source:")
comparison_data = []
for source in ['Organic', 'Paid', 'Direct']:
    df_segment = df[df['traffic_source'] == source]
    segment_counts = df_segment['stage'].value_counts().reindex(funnel_stages)
    comparison_data.append({
        'Traffic Source': source,
        'Landing': segment_counts.iloc[0],
        'Sign Up': segment_counts.iloc[1],
        'Product': segment_counts.iloc[2],
        'Cart': segment_counts.iloc[3],
        'Final Conv %': (segment_counts.iloc[-1] / segment_counts.iloc[0] * 100),
    })

comparison_df = pd.DataFrame(comparison_data)
print(comparison_df.round(2))

# 9. Sankey diagram representation (text-based)
print("\nFunnel Flow Summary:")
print("="*60)
for i in range(len(funnel_metrics) - 1):
    current = funnel_metrics.iloc[i]
    next_stage = funnel_metrics.iloc[i + 1]
    drop = current['Users'] - next_stage['Users']
    conv_pct = (next_stage['Users'] / current['Users'] * 100)

    print(f"{current['Stage']}")
    print(f"  ├─ Continue: {next_stage['Users']:>7,} ({conv_pct:>5.1f}%)")
    print(f"  └─ Drop-off: {drop:>7,} ({100-conv_pct:>5.1f}%)")
print(f"\n{funnel_metrics.iloc[-1]['Stage']}")
print("  └─ Completed: {0:,}".format(int(funnel_metrics.iloc[-1]['Users'])))

# 10. Key insights visualization
fig, ax = plt.subplots(figsize=(10, 6))
ax.axis('off')

insights = f"""
FUNNEL ANALYSIS SUMMARY

Total Users: {int(funnel_metrics['Users'].iloc[0]):,}
Conversions: {int(funnel_metrics['Users'].iloc[-1]):,}
Overall Conversion Rate: {funnel_metrics['Conversion %'].iloc[-1]:.2f}%

BOTTLENECKS (Highest Drop-off):
1. {funnel_metrics[funnel_metrics['Drop-off %'].idxmax()]['Stage']} - {funnel_metrics['Drop-off %'].max():.1f}%
2. {funnel_metrics[funnel_metrics['Drop-off %'].nlargest(2).index[1]]['Stage']}

BEST PERFORMERS (Highest Conversion):
1. {stage_conv_df.nlargest(2, 'Conversion %').iloc[0]['Transition'].split(chr(10))[1][2:]} - {stage_conv_df['Conversion %'].nlargest(2).iloc[0]:.1f}%
2. {stage_conv_df.nlargest(2, 'Conversion %').iloc[1]['Transition'].split(chr(10))[1][2:]} - {stage_conv_df['Conversion %'].nlargest(2).iloc[1]:.1f}%

RECOMMENDATIONS:
• Focus optimization on highest drop-off stages
• Benchmark against industry standards
• A/B test improvements at each stage
• Monitor segment performance separately
"""

ax.text(0.05, 0.95, insights, transform=ax.transAxes, fontfamily='monospace',
        fontsize=11, verticalalignment='top', bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))

plt.tight_layout()
plt.show()
```

## Funnel Analysis Steps

1. Define all stages in customer journey
2. Count users at each stage
3. Calculate drop-off and conversion rates
4. Identify biggest bottlenecks
5. Analyze by segments (traffic source, device, etc.)
6. Benchmark against goals
7. Prioritize optimization efforts

## Common Drop-off Points

- Complex signup forms
- Unexpected fees
- Confusing navigation
- Payment issues
- Technical errors

## Deliverables

- Funnel visualization chart
- Drop-off analysis table
- Stage-to-stage conversion rates
- Segmented funnel analysis
- Bottleneck identification
- Actionable optimization recommendations
- Benchmark comparison report

Overview

This skill performs funnel analysis to track user progression through sequential journey stages, quantify drop-offs, and recommend targeted improvements to increase conversions. It produces clear metrics, visualizations, and segment comparisons so teams can prioritize optimization work. The goal is faster diagnosis of bottlenecks and measurable uplift in conversion rates.

How this skill works

The skill ingests user-stage events and counts users at each defined funnel step, then computes stage-to-stage conversion rates, drop-off percentages, and overall funnel efficiency. It generates visualizations (traditional funnel, stage bar chart, drop-off bars) and segment breakdowns to reveal where and for whom friction occurs. Finally, it highlights top bottlenecks and provides prioritized, testable recommendations.

When to use it

  • Optimizing signup, onboarding, checkout, or any multi-step flow
  • Diagnosing where users abandon a conversion path
  • Comparing funnel performance across channels, devices, or cohorts
  • Validating the impact of product changes or A/B tests
  • Setting benchmarks and prioritizing optimization efforts

Best practices

  • Define clear, mutually exclusive funnel stages that map to real user actions
  • Use cohort and segment analysis (traffic source, device, geography) to surface hidden issues
  • Track both absolute counts and percentage conversions to avoid misleading signals
  • Prioritize fixes where large absolute drop-offs and high drop-off rates overlap
  • A/B test interventions and monitor stage-level metrics, not just final conversions

Example use cases

  • Reduce cart abandonment by identifying the highest drop-off stage between Add-to-Cart and Checkout
  • Improve onboarding by measuring drop-off across first-run flows and simplifying the highest-friction step
  • Compare Organic vs Paid funnels to reallocate acquisition spend toward higher-quality channels
  • Benchmark monthly funnel efficiency and track the impact of product experiments
  • Surface technical or payment issues by correlating sudden drops with error logs or device types

FAQ

What input data do I need?

Event-level records with user identifiers, event stage labels, and timestamps. Include segment fields like traffic source or device when available.

How do I prioritize which stage to optimize first?

Target stages with the largest absolute user loss and high drop-off percentage, then validate impact with A/B tests.