home / skills / aj-geddes / useful-ai-prompts / application-logging
This skill helps you implement structured, centralized logging across applications, enabling faster debugging, auditing, and performance analysis.
npx playbooks add skill aj-geddes/useful-ai-prompts --skill application-loggingReview the files below or copy the command above to add this skill to your agents.
---
name: application-logging
description: Implement structured logging across applications with log aggregation and centralized analysis. Use when setting up application logging, implementing ELK stack, or analyzing application behavior.
---
# Application Logging
## Overview
Implement comprehensive structured logging with proper levels, context, and centralized aggregation for effective debugging and monitoring.
## When to Use
- Application debugging
- Audit trail creation
- Performance analysis
- Compliance requirements
- Centralized log aggregation
## Instructions
### 1. **Node.js Structured Logging with Winston**
```javascript
// logger.js
const winston = require('winston');
const logFormat = winston.format.combine(
winston.format.timestamp({ format: 'YYYY-MM-DD HH:mm:ss' }),
winston.format.errors({ stack: true }),
winston.format.json()
);
const logger = winston.createLogger({
level: process.env.LOG_LEVEL || 'info',
format: logFormat,
defaultMeta: {
service: 'api-service',
environment: process.env.NODE_ENV || 'development'
},
transports: [
new winston.transports.Console({
format: winston.format.combine(
winston.format.colorize(),
winston.format.simple()
)
}),
new winston.transports.File({
filename: 'logs/error.log',
level: 'error'
}),
new winston.transports.File({
filename: 'logs/combined.log'
})
]
});
module.exports = logger;
```
### 2. **Express HTTP Request Logging**
```javascript
// Express middleware
const express = require('express');
const expressWinston = require('express-winston');
const logger = require('./logger');
const app = express();
app.use(expressWinston.logger({
transports: [
new winston.transports.Console(),
new winston.transports.File({ filename: 'logs/http.log' })
],
format: winston.format.combine(
winston.format.timestamp(),
winston.format.json()
),
meta: true,
msg: 'HTTP {{req.method}} {{req.url}}',
expressFormat: true
}));
app.get('/api/users/:id', (req, res) => {
const requestId = req.headers['x-request-id'] || Math.random().toString();
logger.info('User request started', { requestId, userId: req.params.id });
try {
const user = { id: req.params.id, name: 'John Doe' };
logger.debug('User data retrieved', { requestId, user });
res.json(user);
} catch (error) {
logger.error('User retrieval failed', {
requestId,
error: error.message,
stack: error.stack
});
res.status(500).json({ error: 'Internal server error' });
}
});
```
### 3. **Python Structured Logging**
```python
# logger_config.py
import logging
import json
from pythonjsonlogger import jsonlogger
import sys
class CustomJsonFormatter(jsonlogger.JsonFormatter):
def add_fields(self, log_record, record, message_dict):
super().add_fields(log_record, record, message_dict)
log_record['timestamp'] = self.formatTime(record)
log_record['service'] = 'api-service'
log_record['level'] = record.levelname
def setup_logging():
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler(sys.stdout)
formatter = CustomJsonFormatter()
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger
logger = setup_logging()
```
### 4. **Flask Integration**
```python
# Flask app
from flask import Flask, request, g
import uuid
import time
app = Flask(__name__)
@app.before_request
def before_request():
g.start_time = time.time()
g.request_id = request.headers.get('X-Request-ID', str(uuid.uuid4()))
@app.after_request
def after_request(response):
duration = time.time() - g.start_time
logger.info('HTTP Request', extra={
'method': request.method,
'path': request.path,
'status_code': response.status_code,
'duration_ms': duration * 1000,
'request_id': g.request_id
})
return response
@app.route('/api/orders/<order_id>')
def get_order(order_id):
logger.info('Order request', extra={
'order_id': order_id,
'request_id': g.request_id
})
try:
order = db.query(f'SELECT * FROM orders WHERE id = {order_id}')
logger.debug('Order retrieved', extra={'order_id': order_id})
return {'order': order}
except Exception as e:
logger.error('Order retrieval failed', extra={
'order_id': order_id,
'error': str(e),
'request_id': g.request_id
}, exc_info=True)
return {'error': 'Internal server error'}, 500
```
### 5. **ELK Stack Setup**
```yaml
# docker-compose.yml
version: '3.8'
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.0.0
environment:
- discovery.type=single-node
- xpack.security.enabled=false
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ports:
- "9200:9200"
volumes:
- elasticsearch_data:/usr/share/elasticsearch/data
logstash:
image: docker.elastic.co/logstash/logstash:8.0.0
ports:
- "5000:5000"
volumes:
- ./logstash.conf:/usr/share/logstash/pipeline/logstash.conf
depends_on:
- elasticsearch
kibana:
image: docker.elastic.co/kibana/kibana:8.0.0
ports:
- "5601:5601"
environment:
ELASTICSEARCH_HOSTS: http://elasticsearch:9200
depends_on:
- elasticsearch
volumes:
elasticsearch_data:
```
### 6. **Logstash Configuration**
```conf
# logstash.conf
input {
tcp {
port => 5000
codec => json
}
}
filter {
date {
match => [ "timestamp", "YYYY-MM-dd HH:mm:ss" ]
target => "@timestamp"
}
mutate {
add_field => { "[@metadata][index_name]" => "logs-%{+YYYY.MM.dd}" }
}
}
output {
elasticsearch {
hosts => ["elasticsearch:9200"]
index => "%{[@metadata][index_name]}"
}
}
```
## Best Practices
### ✅ DO
- Use structured JSON logging
- Include request IDs for tracing
- Log at appropriate levels
- Add context to error logs
- Implement log rotation
- Use timestamps consistently
- Aggregate logs centrally
- Filter sensitive data
### ❌ DON'T
- Log passwords or secrets
- Log at INFO for every operation
- Use unstructured messages
- Ignore log storage limits
- Skip context information
- Log to stdout in production
- Create unbounded log files
## Log Levels
- **ERROR**: Application error requiring immediate attention
- **WARN**: Potential issues requiring investigation
- **INFO**: Significant application events
- **DEBUG**: Detailed diagnostic information
This skill implements structured application logging with centralized aggregation and analysis. It provides examples for Node.js and Python, middleware for HTTP frameworks, and an ELK stack pattern for collecting and visualizing logs. The goal is reliable, searchable logs that support debugging, observability, and compliance.
The skill configures JSON-formatted logs with consistent timestamps, service metadata, and request IDs for traceability. It shows logger setup (Winston for Node.js, python-json-logger for Python), request middleware to attach contextual fields, and a Docker Compose ELK stack plus Logstash pipeline for ingestion and indexing. Logs are written to console/files locally and forwarded to Elasticsearch for centralized search and dashboards.
How do I correlate logs across services?
Include a request ID on incoming requests, propagate it across service calls, and log that ID with every entry so you can search and join traces in the aggregator.
Should I log to stdout or files in production?
Prefer structured stdout for containerized environments so orchestration systems and log shippers can collect logs; use file logging with rotation only when required by the environment.