home / skills / affaan-m / everything-claude-code / database-migrations

database-migrations skill

/skills/database-migrations

This skill guides safe, zero-downtime database migrations across PostgreSQL, MySQL, and ORMs, helping you plan, implement, and rollback changes confidently.

npx playbooks add skill affaan-m/everything-claude-code --skill database-migrations

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
9.2 KB
---
name: database-migrations
description: Database migration best practices for schema changes, data migrations, rollbacks, and zero-downtime deployments across PostgreSQL, MySQL, and common ORMs (Prisma, Drizzle, Django, TypeORM, golang-migrate).
---

# Database Migration Patterns

Safe, reversible database schema changes for production systems.

## When to Activate

- Creating or altering database tables
- Adding/removing columns or indexes
- Running data migrations (backfill, transform)
- Planning zero-downtime schema changes
- Setting up migration tooling for a new project

## Core Principles

1. **Every change is a migration** — never alter production databases manually
2. **Migrations are forward-only in production** — rollbacks use new forward migrations
3. **Schema and data migrations are separate** — never mix DDL and DML in one migration
4. **Test migrations against production-sized data** — a migration that works on 100 rows may lock on 10M
5. **Migrations are immutable once deployed** — never edit a migration that has run in production

## Migration Safety Checklist

Before applying any migration:

- [ ] Migration has both UP and DOWN (or is explicitly marked irreversible)
- [ ] No full table locks on large tables (use concurrent operations)
- [ ] New columns have defaults or are nullable (never add NOT NULL without default)
- [ ] Indexes created concurrently (not inline with CREATE TABLE for existing tables)
- [ ] Data backfill is a separate migration from schema change
- [ ] Tested against a copy of production data
- [ ] Rollback plan documented

## PostgreSQL Patterns

### Adding a Column Safely

```sql
-- GOOD: Nullable column, no lock
ALTER TABLE users ADD COLUMN avatar_url TEXT;

-- GOOD: Column with default (Postgres 11+ is instant, no rewrite)
ALTER TABLE users ADD COLUMN is_active BOOLEAN NOT NULL DEFAULT true;

-- BAD: NOT NULL without default on existing table (requires full rewrite)
ALTER TABLE users ADD COLUMN role TEXT NOT NULL;
-- This locks the table and rewrites every row
```

### Adding an Index Without Downtime

```sql
-- BAD: Blocks writes on large tables
CREATE INDEX idx_users_email ON users (email);

-- GOOD: Non-blocking, allows concurrent writes
CREATE INDEX CONCURRENTLY idx_users_email ON users (email);

-- Note: CONCURRENTLY cannot run inside a transaction block
-- Most migration tools need special handling for this
```

### Renaming a Column (Zero-Downtime)

Never rename directly in production. Use the expand-contract pattern:

```sql
-- Step 1: Add new column (migration 001)
ALTER TABLE users ADD COLUMN display_name TEXT;

-- Step 2: Backfill data (migration 002, data migration)
UPDATE users SET display_name = username WHERE display_name IS NULL;

-- Step 3: Update application code to read/write both columns
-- Deploy application changes

-- Step 4: Stop writing to old column, drop it (migration 003)
ALTER TABLE users DROP COLUMN username;
```

### Removing a Column Safely

```sql
-- Step 1: Remove all application references to the column
-- Step 2: Deploy application without the column reference
-- Step 3: Drop column in next migration
ALTER TABLE orders DROP COLUMN legacy_status;

-- For Django: use SeparateDatabaseAndState to remove from model
-- without generating DROP COLUMN (then drop in next migration)
```

### Large Data Migrations

```sql
-- BAD: Updates all rows in one transaction (locks table)
UPDATE users SET normalized_email = LOWER(email);

-- GOOD: Batch update with progress
DO $$
DECLARE
  batch_size INT := 10000;
  rows_updated INT;
BEGIN
  LOOP
    UPDATE users
    SET normalized_email = LOWER(email)
    WHERE id IN (
      SELECT id FROM users
      WHERE normalized_email IS NULL
      LIMIT batch_size
      FOR UPDATE SKIP LOCKED
    );
    GET DIAGNOSTICS rows_updated = ROW_COUNT;
    RAISE NOTICE 'Updated % rows', rows_updated;
    EXIT WHEN rows_updated = 0;
    COMMIT;
  END LOOP;
END $$;
```

## Prisma (TypeScript/Node.js)

### Workflow

```bash
# Create migration from schema changes
npx prisma migrate dev --name add_user_avatar

# Apply pending migrations in production
npx prisma migrate deploy

# Reset database (dev only)
npx prisma migrate reset

# Generate client after schema changes
npx prisma generate
```

### Schema Example

```prisma
model User {
  id        String   @id @default(cuid())
  email     String   @unique
  name      String?
  avatarUrl String?  @map("avatar_url")
  createdAt DateTime @default(now()) @map("created_at")
  updatedAt DateTime @updatedAt @map("updated_at")
  orders    Order[]

  @@map("users")
  @@index([email])
}
```

### Custom SQL Migration

For operations Prisma cannot express (concurrent indexes, data backfills):

```bash
# Create empty migration, then edit the SQL manually
npx prisma migrate dev --create-only --name add_email_index
```

```sql
-- migrations/20240115_add_email_index/migration.sql
-- Prisma cannot generate CONCURRENTLY, so we write it manually
CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_users_email ON users (email);
```

## Drizzle (TypeScript/Node.js)

### Workflow

```bash
# Generate migration from schema changes
npx drizzle-kit generate

# Apply migrations
npx drizzle-kit migrate

# Push schema directly (dev only, no migration file)
npx drizzle-kit push
```

### Schema Example

```typescript
import { pgTable, text, timestamp, uuid, boolean } from "drizzle-orm/pg-core";

export const users = pgTable("users", {
  id: uuid("id").primaryKey().defaultRandom(),
  email: text("email").notNull().unique(),
  name: text("name"),
  isActive: boolean("is_active").notNull().default(true),
  createdAt: timestamp("created_at").notNull().defaultNow(),
  updatedAt: timestamp("updated_at").notNull().defaultNow(),
});
```

## Django (Python)

### Workflow

```bash
# Generate migration from model changes
python manage.py makemigrations

# Apply migrations
python manage.py migrate

# Show migration status
python manage.py showmigrations

# Generate empty migration for custom SQL
python manage.py makemigrations --empty app_name -n description
```

### Data Migration

```python
from django.db import migrations

def backfill_display_names(apps, schema_editor):
    User = apps.get_model("accounts", "User")
    batch_size = 5000
    users = User.objects.filter(display_name="")
    while users.exists():
        batch = list(users[:batch_size])
        for user in batch:
            user.display_name = user.username
        User.objects.bulk_update(batch, ["display_name"], batch_size=batch_size)

def reverse_backfill(apps, schema_editor):
    pass  # Data migration, no reverse needed

class Migration(migrations.Migration):
    dependencies = [("accounts", "0015_add_display_name")]

    operations = [
        migrations.RunPython(backfill_display_names, reverse_backfill),
    ]
```

### SeparateDatabaseAndState

Remove a column from the Django model without dropping it from the database immediately:

```python
class Migration(migrations.Migration):
    operations = [
        migrations.SeparateDatabaseAndState(
            state_operations=[
                migrations.RemoveField(model_name="user", name="legacy_field"),
            ],
            database_operations=[],  # Don't touch the DB yet
        ),
    ]
```

## golang-migrate (Go)

### Workflow

```bash
# Create migration pair
migrate create -ext sql -dir migrations -seq add_user_avatar

# Apply all pending migrations
migrate -path migrations -database "$DATABASE_URL" up

# Rollback last migration
migrate -path migrations -database "$DATABASE_URL" down 1

# Force version (fix dirty state)
migrate -path migrations -database "$DATABASE_URL" force VERSION
```

### Migration Files

```sql
-- migrations/000003_add_user_avatar.up.sql
ALTER TABLE users ADD COLUMN avatar_url TEXT;
CREATE INDEX CONCURRENTLY idx_users_avatar ON users (avatar_url) WHERE avatar_url IS NOT NULL;

-- migrations/000003_add_user_avatar.down.sql
DROP INDEX IF EXISTS idx_users_avatar;
ALTER TABLE users DROP COLUMN IF EXISTS avatar_url;
```

## Zero-Downtime Migration Strategy

For critical production changes, follow the expand-contract pattern:

```
Phase 1: EXPAND
  - Add new column/table (nullable or with default)
  - Deploy: app writes to BOTH old and new
  - Backfill existing data

Phase 2: MIGRATE
  - Deploy: app reads from NEW, writes to BOTH
  - Verify data consistency

Phase 3: CONTRACT
  - Deploy: app only uses NEW
  - Drop old column/table in separate migration
```

### Timeline Example

```
Day 1: Migration adds new_status column (nullable)
Day 1: Deploy app v2 — writes to both status and new_status
Day 2: Run backfill migration for existing rows
Day 3: Deploy app v3 — reads from new_status only
Day 7: Migration drops old status column
```

## Anti-Patterns

| Anti-Pattern | Why It Fails | Better Approach |
|-------------|-------------|-----------------|
| Manual SQL in production | No audit trail, unrepeatable | Always use migration files |
| Editing deployed migrations | Causes drift between environments | Create new migration instead |
| NOT NULL without default | Locks table, rewrites all rows | Add nullable, backfill, then add constraint |
| Inline index on large table | Blocks writes during build | CREATE INDEX CONCURRENTLY |
| Schema + data in one migration | Hard to rollback, long transactions | Separate migrations |
| Dropping column before removing code | Application errors on missing column | Remove code first, drop column next deploy |

Overview

This skill provides pragmatic best practices for safe, reversible database migrations across PostgreSQL, MySQL, and common ORMs (Prisma, Drizzle, Django, TypeORM, golang-migrate). It focuses on zero-downtime patterns, separating schema and data work, and producing migration operations that are testable, auditable, and production-safe. The guidance is concise and actionable for teams shipping schema changes on high-volume systems.

How this skill works

The skill inspects migration workflows and recommends patterns: always treat schema changes as migrations, avoid mixing DDL and DML in one run, and prefer forward-only reversible steps. It outlines concrete SQL and ORM-specific commands for safe adds, index creation, backfills, and rollbacks. It prescribes the expand-contract deploy pattern and a pre-apply safety checklist to avoid long locks and destructive edits.

When to use it

  • Creating or altering tables, columns, or indexes in production
  • Planning or running data backfills and large data transforms
  • Implementing zero-downtime schema changes for high-traffic services
  • Onboarding migration tooling for a new project or tech stack
  • Preparing rollbacks and disaster recovery plans for schema changes

Best practices

  • Treat every change as a migration and never modify production schema outside migration files
  • Keep schema and data migrations separate; backfills should be independent steps
  • Make migrations immutable after deployment; create new migrations for fixes or rollbacks
  • Test migrations on production-sized data and a copy of production before deploying
  • Use non-blocking operations (CONCURRENTLY indexes, nullable columns, batched updates)
  • Document a rollback plan and include UP/DOWN or mark migrations as deliberately irreversible

Example use cases

  • Add a new nullable column, backfill in a separate migration, then add NOT NULL constraint later
  • Create an email index using CREATE INDEX CONCURRENTLY with a custom SQL migration for Prisma or ORM gaps
  • Perform a large normalize-email backfill in small batches with SKIP LOCKED to avoid long locks
  • Use SeparateDatabaseAndState in Django to remove a field from models without immediately dropping the DB column
  • Follow expand-contract to rename a column: add new column, backfill, switch app to dual-write, then drop old column

FAQ

Can I mix schema and data changes in one migration?

No. Mixing increases risk and makes rollbacks harder. Split schema changes and backfills into separate migrations.

What if a migration requires a concurrent index but my tool runs in a transaction?

Create an empty migration or mark the migration to run raw SQL outside a transaction. Many tools support special handling or manual SQL files for concurrent index creation.