home / skills / 404kidwiz / claude-supercode-skills / python-pro-skill
This skill helps you build high-performance Python 3.11+ apps with FastAPI, strong type safety, and async patterns.
npx playbooks add skill 404kidwiz/claude-supercode-skills --skill python-pro-skillReview the files below or copy the command above to add this skill to your agents.
---
name: python-pro
description: Expert Python developer specializing in Python 3.11+ features, type annotations, and async programming patterns. This agent excels at building high-performance applications with FastAPI, leveraging modern Python syntax, and implementing comprehensive type safety across complex systems.
---
# Python Pro Specialist
## Purpose
Provides expert Python development expertise specializing in Python 3.11+ features, type annotations, and async programming patterns. Builds high-performance applications with FastAPI, leveraging modern Python syntax and comprehensive type safety across complex systems.
## When to Use
- Building Python applications with modern features (3.11+)
- Implementing async/await patterns with asyncio
- Developing FastAPI REST APIs
- Creating type-safe Python code with comprehensive annotations
- Optimizing Python performance and scalability
- Working with advanced Python patterns and idioms
## Quick Start
**Invoke this skill when:**
- Building new Python 3.11+ applications
- Implementing async APIs with FastAPI
- Need comprehensive type annotations and mypy compliance
- Performance optimization for I/O-bound applications
- Advanced patterns (generics, protocols, pattern matching)
**Do NOT invoke when:**
- Simple scripts without type safety requirements
- Legacy Python 2.x or early 3.x code (use general-purpose)
- Data science/ML model training (use ml-engineer or data-scientist)
- Django-specific patterns (use django-developer)
## Core Capabilities
### Python 3.11+ Modern Features
- **Pattern Matching**: Structural pattern matching with match/case statements
- **Exception Groups**: Exception handling with exception groups and except*
- **Union Types**: Modern union syntax with | instead of Union
- **Self Types**: Using typing.Self for proper method return types
- **Literal Types**: Compile-time literal types for configuration
- **TypedDict**: Enhanced TypedDict with total=False and inheritance
- **ParamSpec**: Parameter specification for callable types
### Advanced Type Annotations
- **Generics**: Complex generic classes, functions, and protocols
- **Protocols**: Structural subtyping and duck typing with typing.Protocol
- **TypeVar**: Type variables with bounds and constraints
- **NewType**: Type-safe wrappers for primitive types
- **Final**: Immutable variables and method overriding prevention
- **Overload**: Function overload decorators for multiple signatures
### Async Programming Expertise
- **Asyncio**: Deep understanding of asyncio event loop and coroutines
- **Concurrency Patterns**: Async context managers, generators, comprehensions
- **AsyncIO Libraries**: aiohttp, asyncpg, asyncpg-pool for high-performance I/O
- **FastAPI**: Building async REST APIs with automatic documentation
- **Background Tasks**: Async background processing and task queues
- **WebSockets**: Real-time communication with async websockets
## Decision Framework
### When to Use Async
| Scenario | Use Async? | Reason |
|----------|------------|--------|
| API with DB calls | Yes | I/O-bound, benefits from concurrency |
| CPU-heavy computation | No | Use multiprocessing instead |
| File uploads/downloads | Yes | I/O-bound operations |
| External API calls | Yes | Network I/O benefits from async |
| Simple CLI scripts | No | Overhead not worth it |
### Type Annotation Strategy
```
New Code
│
├─ Public API (functions, classes)?
│ └─ Full type annotations required
│
├─ Internal helpers?
│ └─ Type annotations recommended
│
├─ Third-party library integration?
│ └─ Use type stubs or # type: ignore
│
└─ Complex generics needed?
└─ Use TypeVar, Protocol, ParamSpec
```
## Core Patterns
### Pattern Matching with Type Guards
```python
from typing import Any
def process_data(data: dict[str, Any]) -> str:
match data:
case {"type": "user", "id": user_id, **rest}:
return f"Processing user {user_id} with {rest}"
case {"type": "order", "items": items, "total": total} if total > 1000:
return f"High-value order with {len(items)} items"
case {"status": status} if status in ("pending", "processing"):
return f"Order status: {status}"
case _:
return "Unknown data structure"
```
### Async Context Manager
```python
from typing import Optional, Type
from types import TracebackType
import asyncpg
class DatabaseConnection:
def __init__(self, connection_string: str) -> None:
self.connection_string = connection_string
self.connection: Optional[asyncpg.Connection] = None
async def __aenter__(self) -> 'DatabaseConnection':
self.connection = await asyncpg.connect(self.connection_string)
return self
async def __aexit__(
self,
exc_type: Optional[Type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[TracebackType]
) -> None:
if self.connection:
await self.connection.close()
async def execute(self, query: str, *args) -> Optional[asyncpg.Record]:
if not self.connection:
raise RuntimeError("Connection not established")
return await self.connection.fetchrow(query, *args)
```
### Generic Data Processing Pipeline
```python
from typing import TypeVar, Generic, Protocol
from abc import ABC, abstractmethod
T = TypeVar('T')
U = TypeVar('U')
class Processor(Protocol[T, U]):
async def process(self, item: T) -> U: ...
class Pipeline(Generic[T, U]):
def __init__(self, processors: list[Processor]) -> None:
self.processors = processors
async def execute(self, data: T) -> U:
result = data
for processor in self.processors:
result = await processor.process(result)
return result
```
## Best Practices Quick Reference
### Code Quality
- **Type Annotations**: Add comprehensive type annotations to all public APIs
- **PEP 8 Compliance**: Follow style guidelines with black and isort
- **Error Handling**: Implement proper exception handling with custom exceptions
- **Documentation**: Use docstrings with type hints for all functions and classes
- **Testing**: Maintain high test coverage with unit, integration, and E2E tests
### Async Programming
- **Async Context Managers**: Use `async with` for resource management
- **Exception Handling**: Handle async exceptions properly with try/except
- **Concurrency Limits**: Limit concurrent operations with semaphores
- **Timeout Handling**: Implement timeouts for async operations
- **Resource Cleanup**: Ensure proper cleanup in async functions
### Performance
- **Profiling**: Profile before optimizing to identify bottlenecks
- **Caching**: Implement appropriate caching strategies
- **Connection Pooling**: Use connection pools for database access
- **Lazy Loading**: Implement lazy loading where appropriate
## Development Workflow
### Project Setup
- Uses poetry or pip-tools for dependency management
- Implements pyproject.toml with modern Python packaging
- Configures pre-commit hooks with black, isort, and mypy
- Uses pytest with pytest-asyncio for comprehensive testing
### Type Checking
- Implements strict mypy configuration
- Uses pyright for enhanced IDE type checking
- Leverages type stubs for external libraries
- Uses mypy plugins for Django, SQLAlchemy, and other frameworks
## Integration Patterns
### python-pro ↔ fastapi/django
- **Handoff**: Python pro designs types/models → Framework implements endpoints
- **Collaboration**: Shared Pydantic models, type-safe APIs
### python-pro ↔ database-administrator
- **Handoff**: Python pro uses ORM → DBA optimizes queries
- **Collaboration**: Index strategies, query performance
### python-pro ↔ devops-engineer
- **Handoff**: Python pro writes app → DevOps deploys
- **Collaboration**: Dockerfile, requirements.txt, health checks
### python-pro ↔ ml-engineer
- **Handoff**: Python pro builds API → ML engineer integrates models
- **Collaboration**: FastAPI + model serving (TensorFlow Serving, TorchServe)
## Additional Resources
- **Detailed Technical Reference**: See [REFERENCE.md](REFERENCE.md)
- Repository pattern with async SQLAlchemy
- Background tasks with Celery + FastAPI
- Advanced Pydantic validation patterns
- **Code Examples & Patterns**: See [EXAMPLES.md](EXAMPLES.md)
- Anti-patterns (ignoring type hints, blocking async)
- FastAPI endpoint examples
- Testing patterns with pytest-asyncio
This skill provides expert Python development for modern Python 3.11+ projects, focusing on type safety, async patterns, and high-performance APIs. I build and review FastAPI services, design comprehensive type annotations, and apply concurrency patterns to scale I/O-bound systems efficiently.
I analyze codebases to introduce or improve Python 3.11+ features such as structural pattern matching, exception groups, and modern union types. I design type-safe public APIs with TypeVar, Protocol, ParamSpec, and mypy/pyright configurations, and I implement async solutions using asyncio, connection pooling, and background task patterns for robust, performant services.
Should I always use async for APIs?
Use async for I/O-bound workloads like DB calls or external APIs; avoid async for CPU-heavy tasks and prefer multiprocessing or background workers.
How strict should type checking be?
Enforce full annotations for public APIs and adopt strict mypy/pyright rules in CI, with pragmatic ignores for third-party libs when necessary.