The MCP LLMS-TXT Documentation Server provides a way to connect AI coding assistants like Cursor, Windsurf, and Claude to your chosen documentation sources via the Model Context Protocol (MCP). This server allows you to specify llms.txt files and provides tools for applications to fetch and use that documentation.
First, install the UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
For alternative installation methods, refer to the official UV documentation.
Choose an llms.txt
file to use with your MCP server. For example, you might use the LangGraph documentation:
https://langchain-ai.github.io/langgraph/llms.txt
Test your MCP server with your chosen llms.txt
file:
uvx --from mcpdoc mcpdoc \
--urls LangGraph:https://langchain-ai.github.io/langgraph/llms.txt \
--transport sse \
--port 8082 \
--host localhost
The server will be available at http://localhost:8082
You can use the MCP Inspector to test tool calls:
npx @modelcontextprotocol/inspector
~/.cursor/mcp.json
file{
"mcpServers": {
"langgraph-docs-mcp": {
"command": "uvx",
"args": [
"--from",
"mcpdoc",
"mcpdoc",
"--urls",
"LangGraph:https://langchain-ai.github.io/langgraph/llms.txt",
"--transport",
"stdio",
"--port",
"8081",
"--host",
"localhost"
]
}
}
}
use the langgraph-docs-mcp server to answer any LangGraph questions --
+ call list_doc_sources tool to get the available llms.txt file
+ call fetch_docs tool to read it
+ reflect on the urls in llms.txt
+ reflect on the input question
+ call fetch_docs on any urls relevant to the question
+ use this to answer the question
what are types of memory in LangGraph?
~/.codeium/windsurf/mcp_config.json
~/Library/Application\ Support/Claude/claude_desktop_config.json
claude mcp add-json langgraph-docs '{"type":"stdio","command":"uvx" ,"args":["--from", "mcpdoc", "mcpdoc", "--urls", "langgraph:https://langchain-ai.github.io/langgraph/llms.txt"]}' -s local
~/.claude.json
$ Claude
$ /mcp
The mcpdoc
command provides several ways to specify documentation sources:
mcpdoc --yaml sample_config.yaml
mcpdoc --json sample_config.json
mcpdoc --urls LangGraph:https://langchain-ai.github.io/langgraph/llms.txt
mcpdoc --yaml sample_config.yaml --json sample_config.json --urls https://langchain-ai.github.io/langgraph/llms.txt
--follow-redirects
: Follow HTTP redirects (defaults to False)--timeout SECONDS
: HTTP request timeout in seconds (defaults to 10.0)Example with options:
mcpdoc --yaml sample_config.yaml --follow-redirects --timeout 15
# Sample configuration for mcp-mcpdoc server
# Each entry must have a llms_txt URL and optionally a name
- name: LangGraph Python
llms_txt: https://langchain-ai.github.io/langgraph/llms.txt
[
{
"name": "LangGraph Python",
"llms_txt": "https://langchain-ai.github.io/langgraph/llms.txt"
}
]
You can also use the server programmatically in Python:
from mcpdoc.main import create_server
# Create a server with documentation sources
server = create_server(
[
{
"name": "LangGraph Python",
"llms_txt": "https://langchain-ai.github.io/langgraph/llms.txt",
},
# You can add multiple documentation sources
],
follow_redirects=True,
timeout=15.0,
)
# Run the server
server.run(transport="stdio")
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "langgraph-docs-mcp" '{"command":"uvx","args":["--from","mcpdoc","mcpdoc","--urls","LangGraph:https://langchain-ai.github.io/langgraph/llms.txt","--transport","stdio","--port","8081","--host","localhost"]}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"langgraph-docs-mcp": {
"command": "uvx",
"args": [
"--from",
"mcpdoc",
"mcpdoc",
"--urls",
"LangGraph:https://langchain-ai.github.io/langgraph/llms.txt",
"--transport",
"stdio",
"--port",
"8081",
"--host",
"localhost"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"langgraph-docs-mcp": {
"command": "uvx",
"args": [
"--from",
"mcpdoc",
"mcpdoc",
"--urls",
"LangGraph:https://langchain-ai.github.io/langgraph/llms.txt",
"--transport",
"stdio",
"--port",
"8081",
"--host",
"localhost"
]
}
}
}
3. Restart Claude Desktop for the changes to take effect