LLM Bridge MCP allows AI agents to interact with multiple large language models through a standardized interface. It leverages the Message Control Protocol (MCP) to provide seamless access to different LLM providers, making it easy to switch between models or use multiple models in the same application.
The server implements the following tool:
run_llm(
prompt: str,
model_name: KnownModelName = "openai:gpt-4o-mini",
temperature: float = 0.7,
max_tokens: int = 8192,
system_prompt: str = "",
) -> LLMResponse
prompt
: The text prompt to send to the LLMmodel_name
: Specific model to use (default: "openai:gpt-4o-mini")temperature
: Controls randomness (0.0 to 1.0)max_tokens
: Maximum number of tokens to generatesystem_prompt
: Optional system prompt to guide the model's behaviorThe easiest way to install llm-bridge-mcp for Claude Desktop is automatically via Smithery:
npx -y @smithery/cli install @sjquant/llm-bridge-mcp --client claude
git clone https://github.com/yourusername/llm-bridge-mcp.git
cd llm-bridge-mcp
# On macOS
brew install uv
# On Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# On Windows
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Create a .env
file in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GOOGLE_API_KEY=your_google_api_key
DEEPSEEK_API_KEY=your_deepseek_api_key
Add a server entry to your Claude Desktop configuration file or .cursor/mcp.json
:
"mcpServers": {
"llm-bridge": {
"command": "uvx",
"args": [
"llm-bridge-mcp"
],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key",
"DEEPSEEK_API_KEY": "your_deepseek_api_key"
}
}
}
This error occurs when the system cannot find the uvx
executable in your PATH.
Solution: Use the full path to uvx
Find the full path to your uvx executable:
# On macOS/Linux
which uvx
# On Windows
where.exe uvx
Then update your MCP server configuration to use the full path:
"mcpServers": {
"llm-bridge": {
"command": "/full/path/to/uvx", // Replace with your actual path
"args": [
"llm-bridge-mcp"
],
"env": {
// ... your environment variables
}
}
}
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "llm-bridge" '{"command":"uvx","args":["llm-bridge-mcp"],"env":{"OPENAI_API_KEY":"your_openai_api_key","ANTHROPIC_API_KEY":"your_anthropic_api_key","GOOGLE_API_KEY":"your_google_api_key","DEEPSEEK_API_KEY":"your_deepseek_api_key"}}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"llm-bridge": {
"command": "uvx",
"args": [
"llm-bridge-mcp"
],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key",
"DEEPSEEK_API_KEY": "your_deepseek_api_key"
}
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"llm-bridge": {
"command": "uvx",
"args": [
"llm-bridge-mcp"
],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key",
"DEEPSEEK_API_KEY": "your_deepseek_api_key"
}
}
}
}
3. Restart Claude Desktop for the changes to take effect