This MCP server enables integration with Brave Search API through a streaming interface, providing web and local search capabilities to AI models and applications that support the Model Context Protocol (MCP).
Prerequisites: Docker installed and a Brave Search API key
Pull the Docker image:
docker pull shoofio/brave-search-mcp-sse:latest
Run the container:
docker run -d --rm \
-p 8080:8080 \
-e BRAVE_API_KEY="YOUR_API_KEY_HERE" \
-e PORT="8080" \
--name brave-search-server \
shoofio/brave-search-mcp-sse:latest
Prerequisites: kubectl
configured, Helm installed, and a Brave Search API key
Add the Helm repository:
helm repo add brave-search-mcp-sse https://shoofio.github.io/brave-search-mcp-sse/
helm repo update
Create a Kubernetes secret for your API key:
kubectl create secret generic brave-search-secret \
--from-literal=api-key='YOUR_API_KEY_HERE' \
-n <your-namespace>
Install the Helm chart:
helm install brave-search brave-search-mcp-sse/brave-search-mcp-sse \
-n <your-namespace> \
--set braveSearch.existingSecret=brave-search-secret
Prerequisites: Node.js v22.x+, npm, Git, and a Brave Search API key
Clone the repository and install dependencies:
git clone <repository_url>
cd brave-search-mcp-sse
npm install
Create a .env
file in the project root:
BRAVE_API_KEY=YOUR_API_KEY_HERE
PORT=8080
Build and run the server:
npm run build
npm start
The server exposes two primary search tools:
brave_web_search
query
(required): The search querycount
(optional): Number of results (1-20, default 10)offset
(optional): Pagination offset (0-9, default 0)brave_local_search
query
(required): Local search query (e.g., "pizza near me")count
(optional): Maximum results (1-20, default 5)To use this server with MCP clients like Cursor, add this configuration to your client settings:
{
"mcpServers": {
"brave-search": {
"transport": "sse",
"url": "http://localhost:8080/sse"
}
}
}
Notes:
/sse
Configuration options:
BRAVE_API_KEY
: Required Brave Search API keyPORT
: Server listening port (default: 8080)LOG_LEVEL
: Logging verbosity (e.g., info, debug)There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > MCP and click "Add new global MCP server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"cursor-rules-mcp": {
"command": "npx",
"args": [
"-y",
"cursor-rules-mcp"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explictly ask the agent to use the tool by mentioning the tool name and describing what the function does.