The Jira MCP Server is a specialized tool that provides AI assistants with access to JIRA issue data stored in Snowflake. This server exposes a standardized interface through the Model Context Protocol, allowing for querying, filtering, and analyzing JIRA issues without direct access to the JIRA platform.
To build the container image locally using Podman:
podman build -t jira-mcp-snowflake:latest .
Create a configuration with appropriate environment variables:
podman run -i --rm \
-e SNOWFLAKE_TOKEN=your_token_here \
-e SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2 \
-e SNOWFLAKE_DATABASE=your_database_name \
-e SNOWFLAKE_SCHEMA=your_schema_name \
-e MCP_TRANSPORT=stdio \
-e ENABLE_METRICS=true \
-e METRICS_PORT=8000 \
localhost/jira-mcp-snowflake:latest
git clone <repository-url>
cd jira-mcp-snowflake
pip install -r requirements.txt
export SNOWFLAKE_TOKEN=your_token_here
export SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2
export SNOWFLAKE_DATABASE=your_database_name
export SNOWFLAKE_SCHEMA=your_schema_name
python src/mcp_server.py
SNOWFLAKE_TOKEN
- Your Snowflake authentication tokenSNOWFLAKE_BASE_URL
- Snowflake API base URLSNOWFLAKE_DATABASE
- Snowflake database containing JIRA dataSNOWFLAKE_SCHEMA
- Snowflake schema containing JIRA tablesMCP_TRANSPORT
- Protocol for MCP communication (default: stdio
)ENABLE_METRICS
- Enable Prometheus metrics (default: false
)METRICS_PORT
- Port for metrics HTTP server (default: 8000
)Add this configuration to integrate with VS Code Continue:
{
"experimental": {
"modelContextProtocolServers": [
{
"name": "jira-mcp-snowflake",
"transport": {
"type": "stdio",
"command": "podman",
"args": [
"run",
"-i",
"--rm",
"-e", "SNOWFLAKE_TOKEN=your_token_here",
"-e", "SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2",
"-e", "SNOWFLAKE_DATABASE=your_database_name",
"-e", "SNOWFLAKE_SCHEMA=your_schema_name",
"-e", "MCP_TRANSPORT=stdio",
"-e", "ENABLE_METRICS=true",
"-e", "METRICS_PORT=8000",
"localhost/jira-mcp-snowflake:latest"
]
}
}
]
}
}
list_issues
)Query and filter JIRA issues with various criteria:
# List all issues from the SMQE project
result = await list_issues(project="SMQE", limit=10)
# Search for issues containing "authentication"
result = await list_issues(search_text="authentication", limit=20)
Parameters:
project
- Filter by project key (e.g., 'SMQE', 'OSIM')issue_type
- Filter by issue type IDstatus
- Filter by issue status IDpriority
- Filter by priority IDsearch_text
- Search in summary and description fieldslimit
- Control number of results returned (default: 50)get_issue_details
)Retrieve comprehensive information for a specific JIRA issue:
# Get detailed information for a specific issue
result = await get_issue_details(issue_key="SMQE-1280")
Parameters:
issue_key
- The JIRA issue key (e.g., 'SMQE-1280')get_project_summary
)Generate statistics across all projects:
# Get statistics for all projects
result = await get_project_summary()
When metrics are enabled, the server provides monitoring endpoints:
/metrics
- Prometheus metrics endpoint for scraping/health
- Health check endpoint returning JSON statusThe metrics include:
Access metrics at: http://localhost:8000/metrics
SNOWFLAKE_TOKEN
in environment variablesTo add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "jira-mcp-snowflake" '{"command":"podman","args":["run","-i","--rm","-e","SNOWFLAKE_TOKEN=your_token_here","-e","SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2","-e","SNOWFLAKE_DATABASE=your_database_name","-e","SNOWFLAKE_SCHEMA=your_schema_name","-e","MCP_TRANSPORT=stdio","-e","ENABLE_METRICS=true","-e","METRICS_PORT=8000","localhost/jira-mcp-snowflake:latest"]}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"jira-mcp-snowflake": {
"command": "podman",
"args": [
"run",
"-i",
"--rm",
"-e",
"SNOWFLAKE_TOKEN=your_token_here",
"-e",
"SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2",
"-e",
"SNOWFLAKE_DATABASE=your_database_name",
"-e",
"SNOWFLAKE_SCHEMA=your_schema_name",
"-e",
"MCP_TRANSPORT=stdio",
"-e",
"ENABLE_METRICS=true",
"-e",
"METRICS_PORT=8000",
"localhost/jira-mcp-snowflake:latest"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"jira-mcp-snowflake": {
"command": "podman",
"args": [
"run",
"-i",
"--rm",
"-e",
"SNOWFLAKE_TOKEN=your_token_here",
"-e",
"SNOWFLAKE_BASE_URL=https://your-account.snowflakecomputing.com/api/v2",
"-e",
"SNOWFLAKE_DATABASE=your_database_name",
"-e",
"SNOWFLAKE_SCHEMA=your_schema_name",
"-e",
"MCP_TRANSPORT=stdio",
"-e",
"ENABLE_METRICS=true",
"-e",
"METRICS_PORT=8000",
"localhost/jira-mcp-snowflake:latest"
]
}
}
}
3. Restart Claude Desktop for the changes to take effect