Qdrant MCP server

Store and retrieve vector-based memories for AI systems.
Back to servers
Setup instructions
Provider
Qdrant
Release date
Dec 02, 2024
Language
Python
Package
Stats
31.7K downloads
732 stars

The Qdrant MCP server provides a Model Context Protocol implementation for Qdrant vector search engine, enabling seamless integration between LLM applications and vector-based data storage. It functions as a semantic memory layer allowing you to store and retrieve information using natural language queries.

Installation Options

Using uvx

The simplest way to run the server is with uvx:

QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \
uvx mcp-server-qdrant

Using Docker

# Build the container
docker build -t mcp-server-qdrant .

# Run the container
docker run -p 8000:8000 \
  -e QDRANT_URL="http://your-qdrant-server:6333" \
  -e QDRANT_API_KEY="your-api-key" \
  -e COLLECTION_NAME="your-collection" \
  mcp-server-qdrant

Installing via Smithery

For Claude Desktop:

npx @smithery/cli install mcp-server-qdrant --client claude

Configuration

Environment Variables

The server is configured using environment variables:

Variable Description Default
QDRANT_URL URL of the Qdrant server None
QDRANT_API_KEY API key for the Qdrant server None
COLLECTION_NAME Name of the collection to use Required
QDRANT_LOCAL_PATH Path to local Qdrant database (alternative to URL) None
EMBEDDING_PROVIDER Embedding provider (currently only "fastembed") fastembed
EMBEDDING_MODEL Name of the embedding model sentence-transformers/all-MiniLM-L6-v2
TOOL_STORE_DESCRIPTION Custom description for the store tool See settings.py
TOOL_FIND_DESCRIPTION Custom description for the find tool See settings.py

Note: You cannot provide both QDRANT_URL and QDRANT_LOCAL_PATH at the same time.

Transport Protocols

The server supports different transport protocols:

QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="my-collection" \
uvx mcp-server-qdrant --transport sse

Supported protocols:

  • stdio (default): Standard input/output, for local MCP clients
  • sse: Server-Sent Events, ideal for remote clients

Claude Desktop Configuration

Add the following to the "mcpServers" section of your claude_desktop_config.json:

{
  "qdrant": {
    "command": "uvx",
    "args": ["mcp-server-qdrant"],
    "env": {
      "QDRANT_URL": "https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
      "QDRANT_API_KEY": "your_api_key",
      "COLLECTION_NAME": "your-collection-name",
      "EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
    }
  }
}

For local Qdrant mode:

{
  "qdrant": {
    "command": "uvx",
    "args": ["mcp-server-qdrant"],
    "env": {
      "QDRANT_LOCAL_PATH": "/path/to/qdrant/database",
      "COLLECTION_NAME": "your-collection-name",
      "EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
    }
  }
}

Using with Cursor/Windsurf

Configure the server as a code search tool:

QDRANT_URL="http://localhost:6333" \
COLLECTION_NAME="code-snippets" \
TOOL_STORE_DESCRIPTION="Store reusable code snippets for later retrieval. \
The 'information' parameter should contain a natural language description of what the code does, \
while the actual code should be included in the 'metadata' parameter as a 'code' property. \
The value of 'metadata' is a Python dictionary with strings as keys. \
Use this whenever you generate some code snippet." \
TOOL_FIND_DESCRIPTION="Search for relevant code snippets based on natural language descriptions. \
The 'query' parameter should describe what you're looking for, \
and the tool will return the most relevant code snippets. \
Use this when you need to find existing code snippets for reuse or reference." \
uvx mcp-server-qdrant --transport sse

In Cursor/Windsurf, add the MCP server using the SSE transport protocol at: http://localhost:8000/sse

Available Tools

qdrant-store

Stores information in the Qdrant database.

Input:

  • information (string): Information to store
  • metadata (JSON): Optional metadata to store

Returns: Confirmation message

qdrant-find

Retrieves relevant information from the Qdrant database.

Input:

  • query (string): Query to use for searching

Returns: Information stored in the Qdrant database as separate messages

How to install this MCP server

For Claude Code

To add this MCP server to Claude Code, run this command in your terminal:

claude mcp add-json "qdrant" '{"command":"uvx","args":["mcp-server-qdrant"],"env":{"QDRANT_URL":"https://xyz-example.eu-central.aws.cloud.qdrant.io:6333","QDRANT_API_KEY":"your_api_key","COLLECTION_NAME":"your-collection-name","EMBEDDING_MODEL":"sentence-transformers/all-MiniLM-L6-v2"}}'

See the official Claude Code MCP documentation for more details.

For Cursor

There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json file so that it is available in all of your projects.

If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json file.

Adding an MCP server to Cursor globally

To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".

When you click that button the ~/.cursor/mcp.json file will be opened and you can add your server like this:

{
    "mcpServers": {
        "qdrant": {
            "command": "uvx",
            "args": [
                "mcp-server-qdrant"
            ],
            "env": {
                "QDRANT_URL": "https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
                "QDRANT_API_KEY": "your_api_key",
                "COLLECTION_NAME": "your-collection-name",
                "EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
            }
        }
    }
}

Adding an MCP server to a project

To add an MCP server to a project you can create a new .cursor/mcp.json file or add it to the existing one. This will look exactly the same as the global MCP server example above.

How to use the MCP server

Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.

The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.

You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.

For Claude Desktop

To add this MCP server to Claude Desktop:

1. Find your configuration file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

2. Add this to your configuration file:

{
    "mcpServers": {
        "qdrant": {
            "command": "uvx",
            "args": [
                "mcp-server-qdrant"
            ],
            "env": {
                "QDRANT_URL": "https://xyz-example.eu-central.aws.cloud.qdrant.io:6333",
                "QDRANT_API_KEY": "your_api_key",
                "COLLECTION_NAME": "your-collection-name",
                "EMBEDDING_MODEL": "sentence-transformers/all-MiniLM-L6-v2"
            }
        }
    }
}

3. Restart Claude Desktop for the changes to take effect

Want to 10x your AI skills?

Get a free account and learn to code + market your apps using AI (with or without vibes!).

Nah, maybe later