This server provides programmatic access to the Pydantic-AI documentation through a Model Context Protocol (MCP) interface. It allows you to retrieve documentation files, list topics, access changelogs, and keep the documentation repository updated, all through standardized tool calls.
Clone the repository:
git clone <repository_url>
cd pydantic-ai-docs-server
Create and activate a Python virtual environment:
Using Python's built-in venv:
python -m venv .venv
source .venv/bin/activate # On Windows use: .venv\Scripts\activate
Or using uv:
uv venv .venv
source .venv/bin/activate # On Windows use: .venv\Scripts\activate
Install dependencies:
uv pip install -e .
# Or using pip:
# pip install -e .
Start the MCP server using one of these commands:
pydantic-ai-docs-server
Or:
python -m pydantic_ai_docs_server
The server will start and listen for MCP requests over standard input/output (stdio).
The server provides the following tools:
This server communicates via newline-delimited JSON messages following the Model Context Protocol (MCP).
Send this JSON request:
{"type": "list-tools"}
Send a JSON request with the tool name and arguments:
{"type": "call-tool", "tool_name": "<tool_name>", "tool_args": {"arg1": "value1"}}
Update documentation:
{"type": "call-tool", "tool_name": "update_documentation", "tool_args": {"force_clone": false}}
Get a specific document:
{"type": "call-tool", "tool_name": "get_document_by_path", "tool_args": {"path": "usage/models.md"}}
List documentation topics:
{"type": "call-tool", "tool_name": "list_topics", "tool_args": {}}
To use this server with an MCP client application like Cursor, configure it in the client's MCP settings file.
Add the following to your .cursor/mcp.json
file:
{
"mcpServers": {
"pydantic-ai-docs": {
"command": "uv",
"args": [
"--directory",
"/path/to/your/pydantic-ai-docs-server",
"run",
"-m",
"pydantic_ai_docs_server"
]
}
}
}
Replace /path/to/your/pydantic-ai-docs-server
with the actual absolute path to the project on your system.
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "pydantic-ai-docs" '{"command":"uv","args":["--directory","/path/to/your/pydantic-ai-docs-server","run","-m","pydantic_ai_docs_server"]}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"pydantic-ai-docs": {
"command": "uv",
"args": [
"--directory",
"/path/to/your/pydantic-ai-docs-server",
"run",
"-m",
"pydantic_ai_docs_server"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"pydantic-ai-docs": {
"command": "uv",
"args": [
"--directory",
"/path/to/your/pydantic-ai-docs-server",
"run",
"-m",
"pydantic_ai_docs_server"
]
}
}
}
3. Restart Claude Desktop for the changes to take effect