Deep Research MCP Server is a Model Context Protocol (MCP) compliant server designed to perform comprehensive web research using Tavily's Search and Crawl APIs. It gathers extensive information on a topic and produces structured JSON output tailored for Large Language Models to create detailed markdown documents.
Using Smithery (for Claude Desktop):
npx -y @smithery/cli install @pinkpixel/dev-deep-research-mcp --client claude
Quick Use with NPX (Recommended):
npx @pinkpixel/deep-research-mcp
Global Installation:
npm install -g @pinkpixel/deep-research-mcp
Then run with:
deep-research-mcp
Set your Tavily API key using one of these methods:
In a .env file:
TAVILY_API_KEY="tvly-YOUR_ACTUAL_API_KEY"
In command line:
TAVILY_API_KEY="tvly-YOUR_ACTUAL_API_KEY" npx @pinkpixel/deep-research-mcp
Override the default documentation prompt in order of precedence:
documentation_prompt
parameter in tool call)DOCUMENTATION_PROMPT
)Setting via .env file:
DOCUMENTATION_PROMPT="Your custom, detailed instructions for the LLM..."
Specify where research documents and images should be saved in order of precedence:
output_path
parameter in tool call)RESEARCH_OUTPUT_PATH
)Setting via .env file:
RESEARCH_OUTPUT_PATH="/path/to/your/research/folder"
Configure timeout and performance settings:
SEARCH_TIMEOUT=120
CRAWL_TIMEOUT=300
MAX_SEARCH_RESULTS=10
CRAWL_MAX_DEPTH=2
CRAWL_LIMIT=15
Enable secure file writing (disabled by default):
FILE_WRITE_ENABLED=true
ALLOWED_WRITE_PATHS=/home/user/research,/home/user/documents
FILE_WRITE_LINE_LIMIT=500
The deep-research-tool accepts the following parameters:
query
(string, required): The main research topic or questiondocumentation_prompt
(string, optional): Custom prompt for documentation generationoutput_path
(string, optional): Path where research documents should be savedsearch_depth
(string, optional, default: "advanced"): "basic" or "advanced"topic
(string, optional, default: "general"): "general" or "news"days
(number, optional): For news topics, days back to include resultstime_range
(string, optional): Time range for search results (e.g., "d", "w", "m", "y")max_search_results
(number, optional, default: 7): Maximum search results (1-20)include_answer
(boolean or string, optional, default: false): Include an LLM-generated summarysearch_timeout
(number, optional, default: 60): Timeout in secondscrawl_max_depth
(number, optional, default: 1): Depth of crawl from base URLcrawl_max_breadth
(number, optional, default: 5): Links to follow per pagecrawl_limit
(number, optional, default: 10): Total links to process per root URLcrawl_instructions
(string, optional): Natural language instructions for crawlercrawl_include_images
(boolean, optional, default: true): Extract image URLscrawl_timeout
(number, optional, default: 180): Timeout in secondsHere's an example of how to call the tool:
{
"name": "deep-research-tool",
"arguments": {
"query": "Explain the architecture of modern data lakes and data lakehouses.",
"max_search_results": 5,
"search_depth": "advanced",
"topic": "general",
"crawl_max_depth": 1,
"include_answer": true,
"output_path": "/home/username/Documents/research/datalakes-whitepaper"
}
}
The tool returns a JSON string containing:
TAVILY_API_KEY
is correctly set and validSEARCH_TIMEOUT
and CRAWL_TIMEOUT
valuesTo add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "deep-research" '{"command":"npx","args":["-y","@pinkpixel/deep-research-mcp"],"env":{"TAVILY_API_KEY":"tvly-YOUR_ACTUAL_API_KEY_HERE"}}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"deep-research": {
"command": "npx",
"args": [
"-y",
"@pinkpixel/deep-research-mcp"
],
"env": {
"TAVILY_API_KEY": "tvly-YOUR_ACTUAL_API_KEY_HERE"
}
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"deep-research": {
"command": "npx",
"args": [
"-y",
"@pinkpixel/deep-research-mcp"
],
"env": {
"TAVILY_API_KEY": "tvly-YOUR_ACTUAL_API_KEY_HERE"
}
}
}
}
3. Restart Claude Desktop for the changes to take effect