Browser Use MCP Server enables web automation through natural language commands. It provides an API that allows Language Models to navigate websites, complete forms, interact with elements, and perform various web tasks. This server integrates with Model Context Protocol (MCP) clients to empower AI systems with browsing capabilities.
Install with a specific provider (e.g., OpenAI):
pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[openai]"
Or install all providers:
pip install -e "git+https://github.com/yourusername/browser-use-mcp.git#egg=browser-use-mcp[all-providers]"
Install Playwright browsers:
playwright install chromium
Add the browser-use-mcp server to your MCP client configuration:
{
"mcpServers": {
"browser-use-mcp": {
"command": "browser-use-mcp",
"args": ["--model", "gpt-4o"],
"env": {
"OPENAI_API_KEY": "your-openai-api-key", // Or any other provider's API key
"DISPLAY": ":0" // For GUI environments
}
}
}
}
Replace "your-openai-api-key"
with your actual API key or use an environment variable reference like process.env.OPENAI_API_KEY
.
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from mcp_use import MCPAgent, MCPClient
async def main():
# Load environment variables
load_dotenv()
# Create MCPClient from config file
client = MCPClient(
config={
"mcpServers": {
"browser-use-mcp": {
"command": "browser-use-mcp",
"args": ["--model", "gpt-4o"],
"env": {
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
"DISPLAY": ":0",
},
}
}
}
)
# Create LLM
llm = ChatOpenAI(model="gpt-4o")
# Create agent with the client
agent = MCPAgent(llm=llm, client=client, max_steps=30)
# Run the query
result = await agent.run(
"""
Navigate to https://github.com, search for "browser-use-mcp", and summarize the project.
""",
max_steps=30,
)
print(f"\nResult: {result}")
if __name__ == "__main__":
asyncio.run(main())
~/Library/Application Support/Claude/claude_desktop_config.json
%AppData%\Claude\claude_desktop_config.json
{
"mcpServers": {
"browser-use": {
"command": "browser-use-mcp",
"args": ["--model", "claude-3-opus-20240229"]
}
}
}
The following LLM providers are supported for browser automation:
Provider | API Key Environment Variable |
---|---|
OpenAI | OPENAI_API_KEY |
Anthropic | ANTHROPIC_API_KEY |
GOOGLE_API_KEY |
|
Cohere | COHERE_API_KEY |
Mistral AI | MISTRAL_API_KEY |
Groq | GROQ_API_KEY |
Together AI | TOGETHER_API_KEY |
AWS Bedrock | AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY |
Fireworks | FIREWORKS_API_KEY |
Azure OpenAI | AZURE_OPENAI_API_KEY and AZURE_OPENAI_ENDPOINT |
Vertex AI | GOOGLE_APPLICATION_CREDENTIALS |
NVIDIA | NVIDIA_API_KEY |
AI21 | AI21_API_KEY |
Databricks | DATABRICKS_HOST and DATABRICKS_TOKEN |
IBM watsonx.ai | WATSONX_API_KEY |
xAI | XAI_API_KEY |
Upstage | UPSTAGE_API_KEY |
Hugging Face | HUGGINGFACE_API_KEY |
Ollama | OLLAMA_BASE_URL |
Llama.cpp | LLAMA_CPP_SERVER_URL |
For more information, check out: https://python.langchain.com/docs/integrations/chat/
You can create a .env
file in the project directory with your API keys:
OPENAI_API_KEY=your_openai_key_here
# Or any other provider key
.env
file.playwright install chromium
.--model
flag to specify a valid model for your provider.--debug
to enable more detailed logging that can help identify issues.There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > MCP and click "Add new global MCP server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"cursor-rules-mcp": {
"command": "npx",
"args": [
"-y",
"cursor-rules-mcp"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explictly ask the agent to use the tool by mentioning the tool name and describing what the function does.