This MCP server provides advanced research capabilities through local language models via Ollama. It retrieves and synthesizes information from the web to create comprehensive reports on any topic.
Download and install Ollama for your platform
Clone the repository and install dependencies:
git clone https://github.com/Cam10001110101/mcp-server-ollama-deep-researcher
cd mcp-server-ollama-deep-researcher
npm install
# Install uv (recommended)
pip install uv
# Then install project dependencies
uv pip install .
# Alternative using standard pip
pip install . # Windows
pip3 install . # macOS/Linux
npm run build
ollama pull deepseek-r1:8b
Install Docker
Clone the repository:
git clone https://github.com/Cam10001110101/mcp-server-ollama-deep-researcher
cd mcp-server-ollama-deep-researcher
.env
file with your API keys:cp .env.example .env
# Edit the .env file
chmod +x run-docker.sh
./run-docker.sh start
ollama pull deepseek-r1:8b
ollama serve
Add the server to your MCP client configuration:
{
"mcpServers": {
"ollama-deep-researcher": {
"command": "node",
"args": ["path/to/mcp-server-ollama-deep-researcher/build/index.js"],
"env": {
"LANGSMITH_TRACING": "true",
"LANGSMITH_ENDPOINT": "https://api.smith.langchain.com",
"LANGSMITH_API_KEY": "your-langsmith-key",
"LANGSMITH_PROJECT": "ollama-deep-researcher-mcp-server",
"TAVILY_API_KEY": "your-tavily-key",
"PERPLEXITY_API_KEY": "your-perplexity-key",
"PYTHONPATH": "path/to/mcp-server-ollama-deep-researcher/src"
}
}
}
}
{
"mcpServers": {
"ollama-deep-researcher": {
"command": "docker",
"args": ["exec", "-i", "ollama-deep-researcher-mcp", "node", "build/index.js"],
"env": {}
}
}
}
Configure research parameters:
{
"name": "configure",
"arguments": {
"maxLoops": 3,
"llmModel": "deepseek-r1:1.5b",
"searchApi": "tavily"
}
}
Parameters:
Research any topic:
{
"name": "research",
"arguments": {
"topic": "Austin LangChain, aimug.org"
}
}
Check progress of ongoing research:
{
"name": "get_status",
"arguments": {
"_dummy": "dummy"
}
}
Using default configuration:
research AI-First Applications
Changing configuration and starting research:
Configure with perplexity and deepseek-r1:8b then research AI-First Applications
ollama list
ollama serve
in terminal modelocalhost:11434
, 0.0.0.0:11434
, or 127.0.0.1:11434
Use the MCP Inspector for debugging:
npx @modelcontextprotocol/inspector node path/to/server/index.js --model llama3.2 --max-loops 3 --search-api tavily
docker ps
docker logs ollama-deep-researcher-mcp
host.docker.internal
doesn't workThere are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > MCP and click "Add new global MCP server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"cursor-rules-mcp": {
"command": "npx",
"args": [
"-y",
"cursor-rules-mcp"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explictly ask the agent to use the tool by mentioning the tool name and describing what the function does.