Claude Prompts MCP Server is a universal Model Context Protocol server that works with any MCP-compatible client. It provides intelligent prompt orchestration with automatic execution type detection, semantic analysis, and hot-reload capabilities to supercharge your AI workflows with Claude Desktop, Cursor Windsurf, and other MCP clients.
Get your MCP server running in under a minute:
# Clone → Install → Launch → Profit! 🚀
git clone https://github.com/minipuft/claude-prompts-mcp.git
cd claude-prompts-mcp/server && npm install && npm run build && npm start
Add this to your claude_desktop_config.json
:
{
"mcpServers": {
"claude-prompts-mcp": {
"command": "node",
"args": ["E:\\path\\to\\claude-prompts-mcp\\server\\dist\\index.js"],
"env": {
"MCP_PROMPTS_CONFIG_PATH": "E:\\path\\to\\claude-prompts-mcp\\server\\promptsConfig.json"
}
}
}
}
Configure your MCP client to connect via STDIO transport:
node
["path/to/claude-prompts-mcp/server/dist/index.js"]
MCP_PROMPTS_CONFIG_PATH=path/to/promptsConfig.json
💡 Pro Tip: Use absolute paths for bulletproof integration across all MCP clients!
Once installed, you can start using the intelligent prompt system:
# Discover available prompts
>>listprompts
# Execute prompts with zero configuration
>>friendly_greeting name="Developer"
# Analyze content automatically
>>content_analysis my research data
# Create notes from content
>>notes my content
# Monitor execution performance
>>execution_analytics {"include_history": true}
You can create and manage prompts directly by talking to your AI assistant:
# Create a new prompt
"Hey Claude, create a new prompt called 'code_reviewer' that analyzes code for security issues"
# Refine existing prompts
"Make the bug_analyzer prompt also suggest performance improvements"
# Build prompt chains
"Create a prompt chain that reviews code, validates output, tests it, then documents it"
The server supports a powerful Nunjucks template engine:
Analyze {{content}} for {% if focus_area %}{{focus_area}}{% else %}general{% endif %} insights.
{% for requirement in requirements %}
- Consider: {{requirement}}
{% endfor %}
{% if previous_context %}
Build upon: {{previous_context}}
{% endif %}
Fine-tune your server's behavior with config.json
:
{
"server": {
"name": "Claude Custom Prompts MCP Server",
"version": "1.0.0",
"port": 9090
},
"prompts": {
"file": "promptsConfig.json",
"registrationMode": "name"
},
"transports": {
"default": "stdio",
"sse": { "enabled": false },
"stdio": { "enabled": true }
}
}
Structure your AI command library with promptsConfig.json
:
{
"categories": [
{
"id": "development",
"name": "🔧 Development",
"description": "Code review, debugging, and development workflows"
},
{
"id": "analysis",
"name": "📊 Analysis",
"description": "Content analysis and research prompts"
},
{
"id": "creative",
"name": "🎨 Creative",
"description": "Content creation and creative writing"
}
],
"imports": [
"prompts/development/prompts.json",
"prompts/analysis/prompts.json",
"prompts/creative/prompts.json"
]
}
Create sophisticated workflows with prompt chains:
# Research Analysis Chain
## User Message Template
Research {{topic}} and provide {{analysis_type}} analysis.
## Chain Configuration
Steps: research → extract → analyze → summarize
Input Mapping: {topic} → {content} → {key_points} → {insights}
Output Format: Structured report with executive summary
Manage your prompts dynamically without server restarts:
# Update prompts on-the-fly
>>update_prompt id="analysis_prompt" content="new template"
# Add new sections dynamically
>>modify_prompt_section id="research" section="examples" content="new examples"
# Hot-reload everything
>>reload_prompts reason="updated templates"
The system's intelligent execution engine automatically detects prompt types and applies appropriate quality gates, allowing you to focus on building effective prompts rather than complex configurations.
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "claude-prompts-mcp" '{"command":"node","args":["path/to/claude-prompts-mcp/server/dist/index.js"],"env":{"MCP_PROMPTS_CONFIG_PATH":"path/to/claude-prompts-mcp/server/promptsConfig.json"}}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"claude-prompts-mcp": {
"command": "node",
"args": [
"path/to/claude-prompts-mcp/server/dist/index.js"
],
"env": {
"MCP_PROMPTS_CONFIG_PATH": "path/to/claude-prompts-mcp/server/promptsConfig.json"
}
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"claude-prompts-mcp": {
"command": "node",
"args": [
"path/to/claude-prompts-mcp/server/dist/index.js"
],
"env": {
"MCP_PROMPTS_CONFIG_PATH": "path/to/claude-prompts-mcp/server/promptsConfig.json"
}
}
}
}
3. Restart Claude Desktop for the changes to take effect