The Gemini MCP Server provides a comprehensive AI platform with Smart Tool Intelligence - a self-learning system that adapts to your preferences and improves over time. It offers seven AI-powered tools including image generation/editing, chat, audio transcription, code execution, and video/image analysis.
You'll need:
Clone the repository and install dependencies:
git clone https://github.com/Garblesnarff/gemini-mcp-server.git
cd gemini-mcp-server
npm install
Configure your API key:
cp .env.example .env
Edit the .env
file to add your API key:
GEMINI_API_KEY=your_actual_api_key_here
OUTPUT_DIR=/path/to/your/output/directory # Optional
DEBUG=false # Optional
Start the server:
npm start
For development with debug logging:
npm run dev
Add the following to your Claude Desktop configuration file (claude_desktop_config.json
):
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["/path/to/gemini-mcp-server/gemini-server.js"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Generate images from text descriptions:
{
"prompt": "A serene mountain landscape at sunset with vibrant colors",
"context": "artistic"
}
Edit existing images with natural language instructions:
{
"image_path": "/path/to/image.jpg",
"edit_instruction": "Add shooting stars to the night sky",
"context": "artistic"
}
Have interactive conversations with Gemini AI:
{
"message": "Explain quantum computing in simple terms",
"context": "consciousness" // Will apply academic rigor enhancement
}
Convert audio to text with optional verbatim mode:
// Standard transcription
{
"file_path": "/path/to/audio.mp3",
"language": "en"
}
// Verbatim mode (exact word-for-word)
{
"file_path": "/path/to/audio.mp3",
"context": "verbatim",
"preserve_spelled_acronyms": true
}
Run Python code in a secure sandbox:
{
"code": "import pandas as pd\ndata = {'x': [1,2,3], 'y': [4,5,6]}\ndf = pd.DataFrame(data)\nprint(df.describe())",
"context": "code"
}
Analyze video content for insights:
{
"file_path": "/path/to/video.mp4",
"analysis_type": "detailed"
}
Extract information from images:
{
"file_path": "/path/to/image.jpg",
"analysis_type": "objects"
}
The server features a unique Smart Tool Intelligence system that:
The system recognizes these contexts and applies appropriate enhancements:
Test image generation:
echo '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"generate_image","arguments":{"prompt":"A cute robot reading a book"}}}' | node gemini-server.js
Test chat with consciousness context:
echo '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"gemini-chat","arguments":{"message":"What is consciousness?","context":"consciousness"}}}' | node gemini-server.js
"Missing GEMINI_API_KEY" Error
# Ensure .env file exists and contains your API key
cp .env.example .env
# Edit .env and add: GEMINI_API_KEY=your_key_here
"File not found" Errors
Intelligence System Not Learning
# Check data directory permissions
ls -la data/
# Verify tool-preferences.json is writable
DEBUG=true npm start
# or
npm run dev
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "gemini" '{"command":"node","args":["/path/to/gemini-mcp-server/gemini-server.js"],"env":{"GEMINI_API_KEY":"your_api_key_here"}}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": [
"/path/to/gemini-mcp-server/gemini-server.js"
],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": [
"/path/to/gemini-mcp-server/gemini-server.js"
],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
3. Restart Claude Desktop for the changes to take effect