The Enhanced MCP Memory server is a powerful tool that extends AI assistants with intelligent memory management, task tracking, and project awareness capabilities. It provides semantic search, automatic task extraction, knowledge graphs, and comprehensive project management through a Model Context Protocol (MCP) server interface.
You can install and run the Enhanced MCP Memory server using one of three methods:
# Install and run with uvx
uvx enhanced-mcp-memory
# Clone and install
git clone https://github.com/cbunting99/enhanced-mcp-memory.git
cd enhanced-mcp-memory
pip install -e .
# Run the server
enhanced-mcp-memory
# Clone repository
git clone https://github.com/cbunting99/enhanced-mcp-memory.git
cd enhanced-mcp-memory
# Install dependencies
pip install -r requirements.txt
# Run directly
python mcp_server_enhanced.py
To connect your MCP client to the Enhanced MCP Memory server, add the following configuration:
{
"mcpServers": {
"memory-manager": {
"command": "uvx",
"args": ["enhanced-mcp-memory"],
"env": {
"LOG_LEVEL": "INFO",
"MAX_MEMORY_ITEMS": "1000",
"ENABLE_AUTO_CLEANUP": "true"
}
}
}
}
{
"mcpServers": {
"memory-manager": {
"command": "python",
"args": ["mcp_server_enhanced.py"],
"cwd": "/path/to/enhanced-mcp-memory",
"env": {
"LOG_LEVEL": "INFO",
"MAX_MEMORY_ITEMS": "1000",
"ENABLE_AUTO_CLEANUP": "true"
}
}
}
}
The Enhanced MCP Memory server provides various tools organized into different categories:
get_memory_context(query)
- Get relevant memories and contextcreate_task(title, description, priority, category)
- Create new tasksget_tasks(status, limit)
- Retrieve tasks with filteringget_project_summary()
- Get comprehensive project overviewstart_thinking_chain(objective)
- Begin structured reasoning processadd_thinking_step(chain_id, stage, title, content, reasoning)
- Add reasoning stepsget_thinking_chain(chain_id)
- Retrieve complete thinking chainlist_thinking_chains(limit)
- List recent thinking chainscreate_context_summary(content, key_points, decisions, actions)
- Compress context for token optimizationstart_new_chat_session(title, objective, continue_from)
- Begin new conversation with optional continuationconsolidate_current_session()
- Compress current session for handoffget_optimized_context(max_tokens)
- Get token-optimized contextestimate_token_usage(text)
- Estimate token count for planningauto_process_conversation(content, interaction_type)
- Extract memories and tasks automaticallydecompose_task(prompt)
- Break complex tasks into subtasksauto_learn_project_conventions(project_path)
- Automatically detect and learn project patternsget_project_conventions_summary()
- Get formatted summary of learned conventionssuggest_correct_command(user_command)
- Suggest project-appropriate command correctionsremember_project_pattern(pattern_type, pattern, description)
- Manually store project patternsupdate_memory_context()
- Refresh memory context with latest project conventionshealth_check()
- Check server health and connectivityget_performance_stats()
- Get detailed performance metricscleanup_old_data(days_old)
- Clean up old memories and tasksoptimize_memories()
- Remove duplicates and optimize storageget_database_stats()
- Get comprehensive database statisticsThe server intelligently learns project-specific conventions to provide better assistance:
# Instead of generic commands, suggests project-specific ones:
User types: "node server.js"
AI suggests: "Use 'npm run dev' instead for this project"
User types: "python main.py"
AI suggests: "Use 'uvicorn main:app --reload' for this FastAPI project"
cmd.exe
and Windows-appropriate path separatorsdir
instead of ls
)Configure the server via environment variables:
Variable | Default | Description |
---|---|---|
LOG_LEVEL |
INFO |
Logging level (DEBUG, INFO, WARNING, ERROR) |
MAX_MEMORY_ITEMS |
1000 |
Maximum memories per project |
MAX_CONTEXT_TOKENS |
8000 |
Token threshold for auto-compression |
CLEANUP_INTERVAL_HOURS |
24 |
Auto-cleanup interval |
ENABLE_AUTO_CLEANUP |
true |
Enable automatic cleanup |
MAX_CONCURRENT_REQUESTS |
5 |
Max concurrent requests |
REQUEST_TIMEOUT |
30 |
Request timeout in seconds |
DATA_DIR |
~/ClaudeMemory | Where to store data and logs |
The server includes built-in performance tracking that you can access using:
get_performance_stats()
- Get detailed performance metricshealth_check()
- Check server health and connectivityThe tracking includes:
The server uses sentence-transformers for intelligent memory retrieval:
The server implements a structured reasoning system:
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "memory-manager" '{"command":"uvx","args":["kiro-mcp-memory"],"env":{"LOG_LEVEL":"INFO","MAX_MEMORY_ITEMS":"1000","ENABLE_AUTO_CLEANUP":"true"}}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"memory-manager": {
"command": "uvx",
"args": [
"kiro-mcp-memory"
],
"env": {
"LOG_LEVEL": "INFO",
"MAX_MEMORY_ITEMS": "1000",
"ENABLE_AUTO_CLEANUP": "true"
}
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json
%APPDATA%\Claude\claude_desktop_config.json
~/.config/Claude/claude_desktop_config.json
2. Add this to your configuration file:
{
"mcpServers": {
"memory-manager": {
"command": "uvx",
"args": [
"kiro-mcp-memory"
],
"env": {
"LOG_LEVEL": "INFO",
"MAX_MEMORY_ITEMS": "1000",
"ENABLE_AUTO_CLEANUP": "true"
}
}
}
}
3. Restart Claude Desktop for the changes to take effect