The MCP Chain of Draft (CoD) Prompt Tool transforms standard prompts into Chain of Draft (CoD) or Chain of Thought (CoT) format to enhance LLM reasoning while reducing token usage. This powerful tool works by transforming your prompt, processing it through your chosen LLM, and delivering a clear, concise response with improved reasoning quality.
pip install -r requirements.txt
.env
file:
ANTHROPIC_API_KEY=your_api_key_here
python server.py
npm install
.env
file:
ANTHROPIC_API_KEY=your_api_key_here
# Build TypeScript files using Nx
npm run nx build
# Start the server
npm start
For development with auto-reload:
npm run dev
Build standalone executables that don't require Node.js on the target system:
# Build for all platforms
npm run build:sea
# Or build for specific platforms
npm run build:macos # macOS
npm run build:linux # Linux
npm run build:windows # Windows
The tool supports various LLM providers:
# For Anthropic Claude
export ANTHROPIC_API_KEY=your_key_here
# For OpenAI
export OPENAI_API_KEY=your_key_here
# For Mistral AI
export MISTRAL_API_KEY=your_key_here
# First install Ollama
curl https://ollama.ai/install.sh | sh
# Pull your preferred model
ollama pull llama2
# or
ollama pull mistral
# Configure the tool to use Ollama
export MCP_LLM_PROVIDER=ollama
export MCP_OLLAMA_MODEL=llama2 # or your chosen model
# Point to your local model API
export MCP_LLM_PROVIDER=custom
export MCP_CUSTOM_LLM_ENDPOINT=http://localhost:your_port
Install Claude Desktop from claude.ai/download
Create or edit the Claude Desktop config file:
~/Library/Application Support/Claude/claude_desktop_config.json
Add the tool configuration (Python version):
{
"mcpServers": {
"chain-of-draft-prompt-tool": {
"command": "python3",
"args": ["/absolute/path/to/cod/server.py"],
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
Or for the JavaScript version:
{
"mcpServers": {
"chain-of-draft-prompt-tool": {
"command": "node",
"args": ["/absolute/path/to/cod/index.js"],
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
Alternatively, use the Claude CLI:
# For Python implementation
claude mcp add chain-of-draft-prompt-tool -e ANTHROPIC_API_KEY="your_api_key_here" "python3 /absolute/path/to/cod/server.py"
# For JavaScript implementation
claude mcp add chain-of-draft-prompt-tool -e ANTHROPIC_API_KEY="your_api_key_here" "node /absolute/path/to/cod/index.js"
Download and install Dive from their releases page
Configure the Chain of Draft tool in Dive's MCP settings:
{
"mcpServers": {
"chain-of-draft-prompt-tool": {
"command": "/path/to/mcp-chain-of-draft-prompt-tool",
"enabled": true,
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
If using the non-SEA version:
{
"mcpServers": {
"chain-of-draft-prompt-tool": {
"command": "node",
"args": ["/path/to/dist/index.js"],
"enabled": true,
"env": {
"ANTHROPIC_API_KEY": "your_api_key_here"
}
}
}
}
Start the MCP Inspector for testing and debugging:
# Start the MCP Inspector with the tool
npm run test-inspector
# Or run it manually
npx @modelcontextprotocol/inspector -e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY -- node dist/index.js
The Inspector will be available at http://localhost:5173
by default.
Tool | Description |
---|---|
chain_of_draft_solve |
Solve a problem using Chain of Draft reasoning |
math_solve |
Solve a math problem with CoD |
code_solve |
Solve a coding problem with CoD |
logic_solve |
Solve a logic problem with CoD |
get_performance_stats |
Get performance stats for CoD vs CoT |
get_token_reduction |
Get token reduction statistics |
analyze_problem_complexity |
Analyze problem complexity |
from client import ChainOfDraftClient
# Create client with specific LLM provider
cod_client = ChainOfDraftClient(
llm_provider="ollama", # or "anthropic", "openai", "mistral", "custom"
model_name="llama2" # specify your model
)
# Use directly
result = await cod_client.solve_with_reasoning(
problem="Solve: 247 + 394 = ?",
domain="math"
)
print(f"Answer: {result['final_answer']}")
print(f"Reasoning: {result['reasoning_steps']}")
print(f"Tokens used: {result['token_count']}")
import { ChainOfDraftClient } from './lib/chain-of-draft-client';
// Create client with your preferred LLM
const client = new ChainOfDraftClient({
provider: 'ollama', // or 'anthropic', 'openai', 'mistral', 'custom'
model: 'llama2', // your chosen model
endpoint: 'http://localhost:11434' // for custom endpoints
});
// Use the client
async function solveMathProblem() {
const result = await client.solveWithReasoning({
problem: "Solve: 247 + 394 = ?",
domain: "math",
max_words_per_step: 5
});
console.log(`Answer: ${result.final_answer}`);
console.log(`Reasoning: ${result.reasoning_steps}`);
console.log(`Tokens used: ${result.token_count}`);
}
solveMathProblem();
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json
file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json
file.
To add a global MCP server go to Cursor Settings > MCP and click "Add new global MCP server".
When you click that button the ~/.cursor/mcp.json
file will be opened and you can add your server like this:
{
"mcpServers": {
"cursor-rules-mcp": {
"command": "npx",
"args": [
"-y",
"cursor-rules-mcp"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json
file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explictly ask the agent to use the tool by mentioning the tool name and describing what the function does.