This MCP server bridges the gap between AI assistants and academic research by providing direct access to Semantic Scholar's comprehensive database. Whether you're conducting literature reviews, exploring citation networks, or seeking academic insights, this server offers a streamlined interface to millions of research papers.
The Semantic Scholar MCP server enables:
For Claude Desktop:
npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client claude --config "{}"
For Cursor IDE: Navigate to Settings → Cursor Settings → MCP → Add new server and paste:
npx -y @smithery/cli@latest run @alperenkocyigit/semantic-scholar-graph-api --client cursor --config "{}"
For Windsurf:
npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client windsurf --config "{}"
For Cline:
npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client cline --config "{}"
Clone the repository:
git clone https://github.com/alperenkocyigit/semantic-scholar-graph-api.git
cd semantic-scholar-graph-api
Install dependencies:
pip install -r requirements.txt
Run the MCP Streamable HTTP server:
python server.py
macOS/Linux Configuration:
Add to your claude_desktop_config.json:
{
"mcpServers": {
"semanticscholar": {
"command": "python",
"args": ["/path/to/your/semantic_scholar_server.py"]
}
}
}
Windows Configuration:
{
"mcpServers": {
"semanticscholar": {
"command": "C:\\Users\\YOUR_USERNAME\\miniconda3\\envs\\mcp_server\\python.exe",
"args": ["D:\\path\\to\\your\\semantic_scholar_server.py"],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
{
"mcpServers": {
"semanticscholar": {
"command": "bash",
"args": [
"-c",
"source /path/to/your/.venv/bin/activate && python /path/to/your/semantic_scholar_server.py"
],
"env": {},
"disabled": false,
"autoApprove": []
}
}
}
npx -y @smithery/cli@latest install @alperenkocyigit/semantic-scholar-graph-api --client <valid-client-name> --key <your-smithery-api-key>
Valid client names: [claude,cursor,vscode,boltai]
The server provides the following tools:
search_semantic_scholar - Search papers by querysearch_semantic_scholar_authors - Find authors by nameget_semantic_scholar_paper_details - Get comprehensive paper infoget_semantic_scholar_author_details - Get author profilesget_semantic_scholar_citations_and_references - Fetch citation networkget_semantic_scholar_paper_match - Find exact paper matchesget_semantic_scholar_paper_autocomplete - Get title suggestionsget_semantic_scholar_papers_batch - Bulk paper retrievalget_semantic_scholar_authors_batch - Bulk author datasearch_semantic_scholar_snippets - Search text contentget_semantic_scholar_paper_recommendations_from_lists - Get recommendations from positive/negative examplesget_semantic_scholar_paper_recommendations - Get recommendations from single paper# Search for papers on machine learning
results = await search_semantic_scholar("machine learning", num_results=5)
# Find authors working on natural language processing
authors = await search_semantic_scholar_authors("natural language processing")
# Get citation network for a specific paper
citations = await get_semantic_scholar_citations_and_references("paper_id_here")
# Get recommendations based on multiple positive and negative examples
positive_papers = ["paper_id_1", "paper_id_2", "paper_id_3"]
negative_papers = ["bad_paper_id_1", "bad_paper_id_2"]
recommendations = await get_semantic_scholar_paper_recommendations_from_lists(
positive_paper_ids=positive_papers,
negative_paper_ids=negative_papers,
limit=20
)
# Find papers similar to a specific research work
similar_papers = await get_semantic_scholar_paper_recommendations(
paper_id="target_paper_id",
limit=15
)
# Search for specific text content within papers
snippets = await search_semantic_scholar_snippets(
query="neural network optimization",
limit=10
)
To add this MCP server to Claude Code, run this command in your terminal:
claude mcp add-json "semanticscholar" '{"command":"python","args":["/path/to/your/semantic_scholar_server.py"]}'
See the official Claude Code MCP documentation for more details.
There are two ways to add an MCP server to Cursor. The most common way is to add the server globally in the ~/.cursor/mcp.json file so that it is available in all of your projects.
If you only need the server in a single project, you can add it to the project instead by creating or adding it to the .cursor/mcp.json file.
To add a global MCP server go to Cursor Settings > Tools & Integrations and click "New MCP Server".
When you click that button the ~/.cursor/mcp.json file will be opened and you can add your server like this:
{
"mcpServers": {
"semanticscholar": {
"command": "python",
"args": [
"/path/to/your/semantic_scholar_server.py"
]
}
}
}
To add an MCP server to a project you can create a new .cursor/mcp.json file or add it to the existing one. This will look exactly the same as the global MCP server example above.
Once the server is installed, you might need to head back to Settings > MCP and click the refresh button.
The Cursor agent will then be able to see the available tools the added MCP server has available and will call them when it needs to.
You can also explicitly ask the agent to use the tool by mentioning the tool name and describing what the function does.
To add this MCP server to Claude Desktop:
1. Find your configuration file:
~/Library/Application Support/Claude/claude_desktop_config.json%APPDATA%\Claude\claude_desktop_config.json~/.config/Claude/claude_desktop_config.json2. Add this to your configuration file:
{
"mcpServers": {
"semanticscholar": {
"command": "python",
"args": [
"/path/to/your/semantic_scholar_server.py"
]
}
}
}
3. Restart Claude Desktop for the changes to take effect